Allen Institute for Brain Science, Seattle, Washington, 98109, USA.
Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, 02138, USA.
Nat Rev Neurosci. 2017 Sep;18(9):530-546. doi: 10.1038/nrn.2017.85. Epub 2017 Aug 3.
Neurons have diverse molecular, morphological, connectional and functional properties. We believe that the only realistic way to manage this complexity - and thereby pave the way for understanding the structure, function and development of brain circuits - is to group neurons into types, which can then be analysed systematically and reproducibly. However, neuronal classification has been challenging both technically and conceptually. New high-throughput methods have created opportunities to address the technical challenges associated with neuronal classification by collecting comprehensive information about individual cells. Nonetheless, conceptual difficulties persist. Borrowing from the field of species taxonomy, we propose principles to be followed in the cell-type classification effort, including the incorporation of multiple, quantitative features as criteria, the use of discontinuous variation to define types and the creation of a hierarchical system to represent relationships between cells. We review the progress of classifying cell types in the retina and cerebral cortex and propose a staged approach for moving forward with a systematic cell-type classification in the nervous system.
神经元具有多样的分子、形态、连接和功能特性。我们认为,要想应对这种复杂性——并为理解大脑回路的结构、功能和发育铺平道路——唯一现实的方法就是将神经元分为不同的类型,然后可以对这些类型进行系统和可重复的分析。然而,神经元的分类在技术和概念上都具有挑战性。新的高通量方法为解决与神经元分类相关的技术挑战创造了机会,这些方法可以收集关于单个细胞的综合信息。尽管如此,概念上的困难仍然存在。我们借鉴物种分类学领域的方法,提出了细胞类型分类工作中应遵循的原则,包括将多个定量特征作为标准纳入其中,使用不连续的变化来定义类型,以及创建一个层次系统来表示细胞之间的关系。我们回顾了视网膜和大脑皮层细胞类型分类的进展,并提出了一个分阶段的方法,以便在神经系统中进行系统的细胞类型分类。