Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
Phys Rev Lett. 2018 Jul 20;121(3):038002. doi: 10.1103/PhysRevLett.121.038002.
Measuring and quantifying nonequilibrium dynamics in active biological systems is a major challenge because of their intrinsic stochastic nature and the limited number of variables accessible in any real experiment. We investigate what nonequilibrium information can be extracted from noninvasive measurements using a stochastic model of soft elastic networks with a heterogeneous distribution of activities, representing enzymatic force generation. In particular, we use this model to study how the nonequilibrium activity, detected by tracking two probes in the network, scales as a function of the distance between the probes. We quantify the nonequilibrium dynamics through the cycling frequencies, a simple measure of circulating currents in the phase space of the probes. We find that these cycling frequencies exhibit power-law scaling behavior with the distance between probes. In addition, we show that this scaling behavior governs the entropy production rate that can be recovered from the two traced probes. Our results provide insight into how internal enzymatic driving generates nonequilibrium dynamics on different scales in soft biological assemblies.
测量和量化活性生物系统中的非平衡动力学是一项重大挑战,因为它们具有固有的随机性质,并且在任何实际实验中都只能访问有限数量的变量。我们使用具有不均匀活性分布的软弹性网络的随机模型来研究可以从非侵入性测量中提取出哪些非平衡信息,该模型代表酶力的产生。特别是,我们使用该模型来研究通过在网络中跟踪两个探针来检测的非平衡活性如何作为探针之间的距离的函数进行缩放。我们通过循环频率来量化非平衡动力学,循环频率是探针相空间中循环电流的简单度量。我们发现这些循环频率与探针之间的距离呈幂律关系。此外,我们表明,这种标度行为控制了可以从两个跟踪探针中恢复的熵产生率。我们的结果深入了解了内部酶促驱动如何在软生物组件中的不同尺度上产生非平衡动力学。