Gradziuk Grzegorz, Mura Federica, Broedersz Chase P
Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
Phys Rev E. 2019 May;99(5-1):052406. doi: 10.1103/PhysRevE.99.052406.
Detecting and quantifying nonequilibrium activity is essential for studying internally driven assemblies, including synthetic active matter and complex living systems such as cells or tissue. We discuss a noninvasive approach of measuring nonequilibrium behavior based on the breaking of detailed balance. We focus on "cycling frequencies"-the average frequency with which the trajectories of pairs of degrees of freedom revolve in phase space-and explain their connection with other nonequilibrium measures, including the area enclosing rate and the entropy production rate. We test our approach on simple toy models composed of elastic networks immersed in a viscous fluid with site-dependent internal driving. We prove both numerically and analytically that the cycling frequencies obey a power law as a function of distance between the tracked degrees of freedom. Importantly, the behavior of the cycling frequencies contains information about the dimensionality of the system and the amplitude of active noise. The mapping we use in our analytical approach thus offers a convenient framework for predicting the behavior of two-point nonequilibrium measures for a given activity distribution in the network.
检测和量化非平衡活动对于研究内部驱动的组件至关重要,这些组件包括合成活性物质以及诸如细胞或组织等复杂的生命系统。我们讨论了一种基于详细平衡的打破来测量非平衡行为的非侵入性方法。我们关注“循环频率”——自由度对的轨迹在相空间中同相旋转的平均频率——并解释它们与其他非平衡度量的联系,包括面积包围率和熵产生率。我们在由沉浸在具有位置依赖内部驱动的粘性流体中的弹性网络组成的简单玩具模型上测试我们的方法。我们通过数值和解析方法证明,循环频率作为被跟踪自由度之间距离的函数遵循幂律。重要的是,循环频率的行为包含有关系统维度和活性噪声幅度的信息。因此,我们在解析方法中使用的映射为预测网络中给定活动分布的两点非平衡度量的行为提供了一个方便的框架。