Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
Talanta. 2018 Nov 1;189:16-23. doi: 10.1016/j.talanta.2018.06.043. Epub 2018 Jun 12.
A facile and sensitive photoelectrochemical (PEC) sensing platform based on zinc phthalocyanine (ZnPc) sensitized TiO nanorodarrays (NRAs) was successfully fabricated for detection of bisphenol A (BPA). The vertically aligned TiO NRAs with one-dimensional (1D) nanostructure was synthesized in-situ on fluorine-doped tin oxide-coated glass (FTO) substrate by simple one-step hydrothermal method, and then the TiO NRAs/FTO surface was covered with ZnPc. 1D nanostructure of TiO NRAs could provide not only more spaces for the load of ZnPc, but direct pathways to reduce the recombination of electron-hole pairs, improving the photocatalytic efficiency. The combination of ZnPc with TiO NRAs extended effectively the absorption of TiO to visible region and improved greatly the charge transfer ability of TiO NRAs. With the addition of BPA, BPA was oxidized by photogenerated holes during PEC reaction so that the photocurrent of the PEC sensing platform increased. BPA could be quantified by measuring the photocurrent change. The developed PEC sensor exhibited outstanding analytical performance with high sensitivity, excellent stability and good reproducibility. A wide linear work range from 0.047 to 52.1 μM was obtained with a low detection limit of 8.6 nM. Meanwhile, the sensor was also used to evaluate the level of BPA in plastic products and food.
一种基于锌酞菁(ZnPc)敏化 TiO 纳米棒阵列(NRAs)的简便灵敏光电化学(PEC)传感平台成功构建,用于检测双酚 A(BPA)。通过简单的一步水热法,在掺氟氧化锡(FTO)涂层玻璃(FTO)基底上原位合成具有一维(1D)纳米结构的垂直排列 TiO NRAs,然后在 TiO NRAs/FTO 表面覆盖 ZnPc。TiO NRAs 的 1D 纳米结构不仅为 ZnPc 的负载提供了更多空间,而且还提供了直接的途径来减少电子-空穴对的复合,从而提高光催化效率。ZnPc 与 TiO NRAs 的结合有效扩展了 TiO 对可见光区域的吸收,并大大提高了 TiO NRAs 的电荷转移能力。随着 BPA 的加入,在 PEC 反应过程中,BPA 被光生空穴氧化,从而使 PEC 传感平台的光电流增加。可以通过测量光电流变化来定量 BPA。所开发的 PEC 传感器表现出出色的分析性能,具有高灵敏度、优异的稳定性和良好的重现性。在 0.047 至 52.1 μM 的宽线性工作范围内,检测限低至 8.6 nM。同时,该传感器还用于评估塑料制品和食品中的 BPA 水平。