Suppr超能文献

基于压缩感知与深度学习的红外图像超分辨率重建

Infrared Image Super Resolution by Combining Compressive Sensing and Deep Learning.

机构信息

University of Chinese Academy of Sciences, Beijing 101408, China.

Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, Shanghai 200083, China.

出版信息

Sensors (Basel). 2018 Aug 7;18(8):2587. doi: 10.3390/s18082587.

Abstract

Super resolution methods alleviate the high cost and high difficulty in applying high resolution infrared image sensors. In this paper we present a novel single image super resolution method for infrared images by combining compressive sensing theory and deep learning. Low resolution images can be regarded as the compressed sampling results of the high resolution ones in compressive sensing. With sparsity in this theory, higher resolution images can be reconstructed. However, because of diverse level of sparsity for different images, the output contains noise and loss of high frequency information. Deep convolutional neural network provides a solution to relieve the noise and supplement some missing high frequency information. By concatenating two methods, we manage to produce better results in super resolution tasks for infrared images than SRCNN and ScSR. PSNR and SSIM values are used to quantify the performance. Applying our method to open datasets and actual infrared imaging experiments, we also find better visual results are preserved.

摘要

超分辨率方法缓解了应用高分辨率红外图像传感器的高成本和高难度。在本文中,我们提出了一种新的基于压缩感知理论和深度学习的红外图像单幅图像超分辨率方法。在压缩感知中,低分辨率图像可以看作是高分辨率图像的压缩采样结果。利用该理论中的稀疏性,可以重建更高分辨率的图像。然而,由于不同图像的稀疏性水平不同,输出中会包含噪声和高频信息的损失。深度卷积神经网络为缓解噪声和补充一些缺失的高频信息提供了一种解决方案。通过将两种方法结合起来,我们成功地在红外图像的超分辨率任务中获得了比 SRCNN 和 ScSR 更好的结果。PSNR 和 SSIM 值用于量化性能。将我们的方法应用于公开数据集和实际的红外成像实验,我们还发现保留了更好的视觉效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da0/6111996/bae0bc42222c/sensors-18-02587-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验