Suppr超能文献

探索红外(IR)光谱分析的步骤:预处理、(经典)数据建模和深度学习。

Exploring the Steps of Infrared (IR) Spectral Analysis: Pre-Processing, (Classical) Data Modelling, and Deep Learning.

作者信息

Mokari Azadeh, Guo Shuxia, Bocklitz Thomas

机构信息

Leibniz Institute of Photonic Technology, Member of Research Alliance "Leibniz Health Technologies", 07745 Jena, Germany.

Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany.

出版信息

Molecules. 2023 Sep 30;28(19):6886. doi: 10.3390/molecules28196886.

Abstract

Infrared (IR) spectroscopy has greatly improved the ability to study biomedical samples because IR spectroscopy measures how molecules interact with infrared light, providing a measurement of the vibrational states of the molecules. Therefore, the resulting IR spectrum provides a unique vibrational fingerprint of the sample. This characteristic makes IR spectroscopy an invaluable and versatile technology for detecting a wide variety of chemicals and is widely used in biological, chemical, and medical scenarios. These include, but are not limited to, micro-organism identification, clinical diagnosis, and explosive detection. However, IR spectroscopy is susceptible to various interfering factors such as scattering, reflection, and interference, which manifest themselves as baseline, band distortion, and intensity changes in the measured IR spectra. Combined with the absorption information of the molecules of interest, these interferences prevent direct data interpretation based on the Beer-Lambert law. Instead, more advanced data analysis approaches, particularly artificial intelligence (AI)-based algorithms, are required to remove the interfering contributions and, more importantly, to translate the spectral signals into high-level biological/chemical information. This leads to the tasks of spectral pre-processing and data modeling, the main topics of this review. In particular, we will discuss recent developments in both tasks from the perspectives of classical machine learning and deep learning.

摘要

红外(IR)光谱技术极大地提升了研究生物医学样本的能力,因为红外光谱技术可测量分子与红外光的相互作用方式,从而测定分子的振动状态。因此,所得的红外光谱为样本提供了独特的振动指纹。这一特性使红外光谱技术成为检测多种化学物质的一项极有价值且用途广泛的技术,并广泛应用于生物、化学和医学领域。这些应用包括但不限于微生物鉴定、临床诊断和爆炸物检测。然而,红外光谱技术容易受到各种干扰因素的影响,如散射、反射和干涉,这些因素在测量所得的红外光谱中表现为基线、谱带畸变和强度变化。这些干扰与目标分子的吸收信息相结合,使得无法直接基于比尔-朗伯定律进行数据解读。相反,需要更先进的数据分析方法,尤其是基于人工智能(AI)的算法,来消除干扰因素的影响,更重要的是,将光谱信号转化为高层次的生物/化学信息。这就引出了光谱预处理和数据建模的任务,这也是本综述的主要主题。特别是,我们将从经典机器学习和深度学习的角度讨论这两项任务的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f886/10574384/c80eddfd0c43/molecules-28-06886-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验