Suppr超能文献

超分辨率卷积神经网络在胸部 CT 图像分辨率增强中的应用。

Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.

机构信息

Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, 565-0871, Japan.

出版信息

J Digit Imaging. 2018 Aug;31(4):441-450. doi: 10.1007/s10278-017-0033-z.

Abstract

In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.

摘要

在这项研究中,应用了新兴的基于深度学习的超分辨率方法——超分辨率卷积神经网络(SRCNN)方案,通过后处理方法对其进行评估。为了进行评估,从癌症成像档案中抽取了 89 例胸部 CT 病例。这 89 个 CT 病例被随机分为 45 个训练病例和 44 个外部测试病例。使用训练数据集对 SRCNN 进行训练。使用训练好的 SRCNN,从原始测试图像中进行下采样,从低分辨率图像重建出高分辨率图像。为了进行定量评估,测量了两种图像质量指标,并与传统线性插值方法进行了比较。SRCNN 方案的图像恢复质量明显高于线性插值方法(p<0.001 或 p<0.05)。SRCNN 方案重建的高分辨率图像得到了高度恢复,与原始参考图像相当,特别是在放大 2 倍的情况下。这些结果表明,在增强胸部 CT 图像的图像分辨率方面,SRCNN 方案明显优于线性插值方法。这些结果还表明,SRCNN 可能成为从标准 CT 图像生成高分辨率 CT 图像的一种潜在解决方案。

相似文献

1
Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.
J Digit Imaging. 2018 Aug;31(4):441-450. doi: 10.1007/s10278-017-0033-z.
2
Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning.
Comput Methods Programs Biomed. 2020 Apr;187:105059. doi: 10.1016/j.cmpb.2019.105059. Epub 2019 Sep 24.
3
Improving Image Resolution of Whole-Heart Coronary MRA Using Convolutional Neural Network.
J Digit Imaging. 2020 Apr;33(2):497-503. doi: 10.1007/s10278-019-00264-6.
4
PILN: A posterior information learning network for blind reconstruction of lung CT images.
Comput Methods Programs Biomed. 2023 Apr;232:107449. doi: 10.1016/j.cmpb.2023.107449. Epub 2023 Feb 27.
6
MR-based synthetic CT generation using a deep convolutional neural network method.
Med Phys. 2017 Apr;44(4):1408-1419. doi: 10.1002/mp.12155. Epub 2017 Mar 21.
7
Computed tomography super-resolution using deep convolutional neural network.
Phys Med Biol. 2018 Jul 16;63(14):145011. doi: 10.1088/1361-6560/aacdd4.
8
Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
Med Phys. 2019 Apr;46(4):1686-1696. doi: 10.1002/mp.13415. Epub 2019 Feb 14.
10
Autoencoder-Inspired Convolutional Network-Based Super-Resolution Method in MRI.
IEEE J Transl Eng Health Med. 2021 Apr 28;9:1800113. doi: 10.1109/JTEHM.2021.3076152. eCollection 2021.

引用本文的文献

2
ACL-DUNet: A tumor segmentation method based on multiple attention and densely connected breast ultrasound images.
PLoS One. 2024 Nov 1;19(11):e0307916. doi: 10.1371/journal.pone.0307916. eCollection 2024.
3
[The challenging patient-recommendations and solutions].
Radiologie (Heidelb). 2024 Dec;64(12):935-945. doi: 10.1007/s00117-024-01369-y. Epub 2024 Sep 16.
4
Deep Learning and Neural Architecture Search for Optimizing Binary Neural Network Image Super Resolution.
Biomimetics (Basel). 2024 Jun 18;9(6):369. doi: 10.3390/biomimetics9060369.
5
Super-resolution deep-learning reconstruction for cardiac CT: impact of radiation dose and focal spot size on task-based image quality.
Phys Eng Sci Med. 2024 Sep;47(3):1001-1014. doi: 10.1007/s13246-024-01423-y. Epub 2024 Jun 17.
6
Super-resolution techniques for biomedical applications and challenges.
Biomed Eng Lett. 2024 Mar 19;14(3):465-496. doi: 10.1007/s13534-024-00365-4. eCollection 2024 May.
7
An AI-Based Low-Risk Lung Health Image Visualization Framework Using LR-ULDCT.
J Imaging Inform Med. 2024 Oct;37(5):2047-2062. doi: 10.1007/s10278-024-01062-5. Epub 2024 Mar 15.
9
A Super-Resolution Diffusion Model for Recovering Bone Microstructure from CT Images.
Radiol Artif Intell. 2023 Sep 20;5(6):e220251. doi: 10.1148/ryai.220251. eCollection 2023 Nov.
10
Super-Resolution Reconstruction of CT Images Based on Multi-scale Information Fused Generative Adversarial Networks.
Ann Biomed Eng. 2024 Jan;52(1):57-70. doi: 10.1007/s10439-023-03412-w. Epub 2023 Dec 8.

本文引用的文献

1
Pulmonary Fibrosis on High-Resolution CT of Patients With Pulmonary Alveolar Proteinosis.
AJR Am J Roentgenol. 2016 Sep;207(3):544-51. doi: 10.2214/AJR.15.14982.
2
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
4
The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository.
J Digit Imaging. 2013 Dec;26(6):1045-57. doi: 10.1007/s10278-013-9622-7.
5
Highlights of HRCT imaging in IPF.
Respir Res. 2013;14 Suppl 1(Suppl 1):S3. doi: 10.1186/1465-9921-14-S1-S3. Epub 2013 Apr 16.
7
Image super-resolution via sparse representation.
IEEE Trans Image Process. 2010 Nov;19(11):2861-73. doi: 10.1109/TIP.2010.2050625. Epub 2010 May 18.
8
Identifying the most infectious lesions in pulmonary tuberculosis by high-resolution multi-detector computed tomography.
Eur Radiol. 2010 Sep;20(9):2135-45. doi: 10.1007/s00330-010-1796-5. Epub 2010 Apr 30.
9
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.
10
Nonlinear dimensionality reduction by locally linear embedding.
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验