Suppr超能文献

胰腺癌生存分析定义了一个预测结果的特征。

Pancreatic cancer survival analysis defines a signature that predicts outcome.

机构信息

School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, PA, United States of America.

Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America.

出版信息

PLoS One. 2018 Aug 9;13(8):e0201751. doi: 10.1371/journal.pone.0201751. eCollection 2018.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the US. Despite multiple large-scale genetic sequencing studies, identification of predictors of patient survival remains challenging. We performed a comprehensive assessment and integrative analysis of large-scale gene expression datasets, across multiple platforms, to enable discovery of a prognostic gene signature for patient survival in pancreatic cancer. PDAC RNA-Sequencing data from The Cancer Genome Atlas was stratified into Survival+ (>2-year survival) and Survival-(<1-year survival) cohorts (n = 47). Comparisons of RNA expression profiles between survival groups and normal pancreatic tissue expression data from the Gene Expression Omnibus generated an initial PDAC specific prognostic differential expression gene list. The candidate prognostic gene list was then trained on the Australian pancreatic cancer dataset from the ICGC database (n = 103), using iterative sampling based algorithms, to derive a gene signature predictive of patient survival. The gene signature was validated in 2 independent patient cohorts and against existing PDAC subtype classifications. We identified 707 candidate prognostic genes exhibiting differential expression in tumor versus normal tissue. A substantial fraction of these genes was also found to be differentially methylated between survival groups. From the candidate gene list, a 5-gene signature (ADM, ASPM, DCBLD2, E2F7, and KRT6A) was identified. Our signature demonstrated significant power to predict patient survival in two distinct patient cohorts and was independent of AJCC TNM staging. Cross-validation of our gene signature reported a better ROC AUC (≥ 0.8) when compared to existing PDAC survival signatures. Furthermore, validation of our signature through immunohistochemical analysis of patient tumor tissue and existing gene expression subtyping data in PDAC, demonstrated a correlation to the presence of vascular invasion and the aggressive squamous tumor subtype. Assessment of these genes in patient biopsies could help further inform risk-stratification and treatment decisions in pancreatic cancer.

摘要

胰腺导管腺癌 (PDAC) 是美国第三大致癌死亡原因。尽管进行了多次大规模的基因测序研究,但识别患者生存的预测因素仍然具有挑战性。我们对来自多个平台的大规模基因表达数据集进行了全面评估和综合分析,以发现用于胰腺癌患者生存的预后基因特征。TCGA 的 PDAC RNA-Seq 数据分为生存+(>2 年生存率)和生存-(<1 年生存率)队列(n=47)。通过与来自 GEO 的正常胰腺组织表达数据的生存组间 RNA 表达谱比较,生成了最初的 PDAC 特异性预后差异表达基因列表。然后,使用基于迭代采样的算法,在来自 ICGC 数据库的澳大利亚胰腺癌数据集(n=103)上对候选预后基因列表进行训练,以得出预测患者生存的基因特征。该基因特征在 2 个独立的患者队列和现有的 PDAC 亚型分类中进行了验证。我们确定了 707 个候选预后基因,这些基因在肿瘤与正常组织之间表现出差异表达。这些基因中有相当一部分在生存组之间也存在差异甲基化。从候选基因列表中,确定了一个 5 个基因的特征(ADM、ASPM、DCBLD2、E2F7 和 KRT6A)。我们的特征在两个不同的患者队列中都具有显著的预测患者生存的能力,并且独立于 AJCC TNM 分期。我们的基因特征的交叉验证报告了更高的 ROC AUC(≥0.8),与现有的 PDAC 生存特征相比。此外,通过对患者肿瘤组织的免疫组织化学分析和 PDAC 中现有的基因表达亚型数据进行验证,我们的特征与血管侵犯和侵袭性鳞状肿瘤亚型的存在相关。在患者活检中评估这些基因可能有助于进一步为胰腺癌的风险分层和治疗决策提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验