AKAP1 通过抑制 Drp1 依赖性线粒体裂变来保护大脑免受缺血性中风。
AKAP1 Protects from Cerebral Ischemic Stroke by Inhibiting Drp1-Dependent Mitochondrial Fission.
机构信息
Department of Pharmacology and Iowa Neuroscience Institute.
National Center for Microscopy and Imaging Research.
出版信息
J Neurosci. 2018 Sep 19;38(38):8233-8242. doi: 10.1523/JNEUROSCI.0649-18.2018. Epub 2018 Aug 9.
Mitochondrial fission and fusion impact numerous cellular functions and neurons are particularly sensitive to perturbations in mitochondrial dynamics. Here we describe that male mice lacking the mitochondrial A-kinase anchoring protein 1 (AKAP1) exhibit increased sensitivity in the transient middle cerebral artery occlusion model of focal ischemia. At the ultrastructural level, AKAP1 mice have smaller mitochondria and increased contacts between mitochondria and the endoplasmic reticulum in the brain. Mechanistically, deletion of AKAP1 dysregulates complex II of the electron transport chain, increases superoxide production, and impairs Ca homeostasis in neurons subjected to excitotoxic glutamate. Ca deregulation in neurons lacking AKAP1 can be attributed to loss of inhibitory phosphorylation of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) at the protein kinase A (PKA) site Ser637. Our results indicate that inhibition of Drp1-dependent mitochondrial fission by the outer mitochondrial AKAP1/PKA complex protects neurons from ischemic stroke by maintaining respiratory chain activity, inhibiting superoxide production, and delaying Ca deregulation. They also provide the first genetic evidence that Drp1 inhibition may be of therapeutic relevance for the treatment of stroke and neurodegeneration. Previous work suggests that activation of dynamin-related protein 1 (Drp1) and mitochondrial fission contribute to ischemic injury in the brain. However, the specificity and efficacy of the pharmacological Drp1 inhibitor mdivi-1 that was used has now been discredited by several high-profile studies. Our report is timely and highly impactful because it provides the first evidence that genetic disinhibition of Drp1 via knock-out of the mitochondrial protein kinase A (PKA) scaffold AKAP1 exacerbates stroke injury in mice. Mechanistically, we show that electron transport deficiency, increased superoxide production, and Ca overload result from genetic disinhibition of Drp1. In summary, our work settles current controversies regarding the role of mitochondrial fission in neuronal injury, provides mechanisms, and suggests that fission inhibitors hold promise as future therapeutic agents.
线粒体裂变和融合对许多细胞功能都有影响,神经元对线粒体动力学的干扰尤为敏感。在这里,我们描述了缺乏线粒体 A-激酶锚定蛋白 1(AKAP1)的雄性小鼠在短暂性大脑中动脉闭塞模型的局灶性缺血中表现出更高的敏感性。在超微结构水平上,AKAP1 小鼠的线粒体更小,线粒体与内质网之间的接触增加。从机制上讲,AKAP1 的缺失会使电子传递链复合物 II 失活,增加超氧自由基的产生,并损害谷氨酸诱导的兴奋性毒性作用下神经元的钙稳态。缺乏 AKAP1 的神经元中的钙失调可归因于蛋白激酶 A(PKA)位点 Ser637 上的线粒体裂变酶 dynamin-related protein 1(Drp1)的抑制性磷酸化的丧失。我们的结果表明,通过外线粒体 AKAP1/PKA 复合物抑制依赖 Drp1 的线粒体裂变可通过维持呼吸链活性、抑制超氧自由基的产生和延迟钙失调来保护神经元免受缺血性中风。它们还首次提供了遗传证据,表明 Drp1 抑制可能与治疗中风和神经退行性变有关。先前的工作表明,dynamin-related protein 1(Drp1)的激活和线粒体裂变有助于大脑中的缺血性损伤。然而,已被几项高影响力研究否定了以前用于研究的 Drp1 抑制剂 mdivi-1 的特异性和疗效。我们的报告是及时和具有高度影响力的,因为它首次提供了证据表明,通过敲除线粒体蛋白激酶 A(PKA)支架 AKAP1 对 Drp1 的遗传抑制会加剧小鼠的中风损伤。从机制上讲,我们表明电子传递缺陷、超氧自由基产生增加和钙超载是由于 Drp1 的遗传抑制所致。总之,我们的工作解决了目前关于线粒体裂变在神经元损伤中的作用的争议,提供了机制,并表明裂变抑制剂有望成为未来的治疗药物。
相似文献
J Neurosci. 2020-3-6
Mol Neurobiol. 2021-7
PLoS Biol. 2011-4-19
引用本文的文献
CNS Neurosci Ther. 2025-8
Front Neurosci. 2025-1-7
Hum Mol Genet. 2025-2-1
PLoS Comput Biol. 2024-11-18
本文引用的文献
Dev Neurobiol. 2017-8-30
Schizophr Res. 2017-9
J Cell Sci. 2017-2-15
Pharmacol Res Perspect. 2016-4-21