Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
School of Medicine, University of Barcelona, Barcelona, Spain.
Sci Rep. 2018 Aug 9;8(1):11906. doi: 10.1038/s41598-018-30494-7.
Our aim was to demonstrate that biofilm formation in a clinical strain of methicillin-resistant Staphylococcus aureus (MRSA) can be enhanced by environment exposure in an endotracheal tube (ETT) and to determine how it is affected by systemic treatment and atmospheric conditions. Second, we aimed to assess biofilm production dynamics after extubation. We prospectively analyzed 70 ETT samples obtained from pigs randomized to be untreated (controls, n = 20), or treated with vancomycin (n = 32) or linezolid (n = 18). A clinical MRSA strain (MRSA-in) was inoculated in pigs to create a pneumonia model, before treating with antibiotics. Tracheally intubated pigs with MRSA severe pneumonia, were mechanically ventilated for 69 ± 16 hours. All MRSA isolates retrieved from ETTs (ETT-MRSA) were tested for their in vitro biofilm production by microtiter plate assay. In vitro biofilm production of MRSA isolates was sequentially studied over the next 8 days post-extubation to assess biofilm capability dynamics over time. All experiments were performed under ambient air (O) or ambient air supplemented with 5% CO. We collected 52 ETT-MRSA isolates (placebo N = 19, linezolid N = 11, and vancomycin N = 22) that were clonally identical to the MRSA-in. Among the ETT-MRSA isolates, biofilm production more than doubled after extubation in 40% and 50% under 5% CO and O, respectively. Systemic antibiotic treatment during intubation did not affect this outcome. Under both atmospheric conditions, biofilm production for MRSA-in was at least doubled for 9 ETT-MRSA isolates, and assessment of these showed that biofilm production decreased progressively over a 4-day period after extubation. In conclusion, a weak biofilm producer MRSA strain significantly enhances its biofilm production within an ETT, but it is influenced by the ETT environment rather than by the systemic treatment used during intubation or by the atmospheric conditions used for bacterial growth.
我们的目的是证明耐甲氧西林金黄色葡萄球菌(MRSA)临床株在气管内管(ETT)中的环境暴露可以增强生物膜的形成,并确定其如何受到全身治疗和大气条件的影响。其次,我们旨在评估拔管后生物膜产生的动态。我们前瞻性分析了 70 例来自随机接受未治疗(对照组,n=20)、万古霉素(n=32)或利奈唑胺(n=18)治疗的猪的 ETT 样本。在使用抗生素治疗之前,将临床 MRSA 株(MRSA-in)接种到猪中以建立肺炎模型。患有 MRSA 严重肺炎的气管内插管猪进行机械通气 69±16 小时。从 ETT 中回收的所有 MRSA 分离株(ETT-MRSA)均通过微量滴定板测定法测试其体外生物膜产生。在拔管后接下来的 8 天内,连续研究 MRSA 分离株的体外生物膜产生情况,以评估随时间推移的生物膜能力动态。所有实验均在环境空气(O)或环境空气补充 5% CO 下进行。我们收集了 52 株 ETT-MRSA 分离株(安慰剂 N=19、利奈唑胺 N=11 和万古霉素 N=22),这些分离株与 MRSA-in 具有克隆同源性。在 ETT-MRSA 分离株中,在 5% CO 和 O 下分别为 40%和 50%时,拔管后生物膜生成增加了一倍以上。在插管期间进行全身抗生素治疗并没有影响这一结果。在这两种大气条件下,对于至少 9 株 ETT-MRSA 分离株,MRSA-in 的生物膜生成至少增加了一倍,并且对这些分离株的评估表明,拔管后 4 天内生物膜生成逐渐减少。总之,一株弱生物膜生成 MRSA 株在 ETT 中显著增强了其生物膜生成,但它受 ETT 环境的影响,而不是插管期间使用的全身治疗或用于细菌生长的大气条件的影响。