Suppr超能文献

扰动理论机器学习模型:理论、监管问题及在有机合成、药物化学、蛋白质研究和技术中的应用。

Perturbation Theory Machine Learning Models: Theory, Regulatory Issues, and Applications to Organic Synthesis, Medicinal Chemistry, Protein Research, and Technology.

机构信息

Department of Organic Chemistry II, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.

Department of Public Law, Chair on Human Genome and Law, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.

出版信息

Curr Top Med Chem. 2018;18(14):1203-1213. doi: 10.2174/1568026618666180810124031.

Abstract

Machine Learning (ML) models are very useful to predict physicochemical properties of small organic molecules, proteins, proteomes, and complex systems. These methods may be useful to reduce the cost of research in terms of materials resources, time, and laboratory animal sacrifice. Recently different authors have reported Perturbation Theory (PT) methods combined with ML to obtain PTML (PT + ML) models. They have applied PTML models to the study of different biological systems and in technology as well. Here, we present one state-of- the-art review about the different applications of PTML models in Organic Synthesis, Medicinal Chemistry, Protein Research, and Technology. In this work, we also embrace an overview of regulatory issues for acceptance and validation of both: the Cheminformatics models, and the characterization of new Biomaterials. This is a main question in order to make scientific result self for humans and environment.

摘要

机器学习 (ML) 模型在预测小分子、蛋白质、蛋白质组和复杂系统的物理化学性质方面非常有用。这些方法可以在材料资源、时间和实验室动物牺牲方面降低研究成本。最近,不同的作者已经报告了将微扰理论 (PT) 方法与 ML 结合起来以获得 PTML(PT+ML)模型。他们已经将 PTML 模型应用于不同的生物系统和技术的研究。在这里,我们呈现了一个关于 PTML 模型在有机合成、药物化学、蛋白质研究和技术方面的不同应用的最新综述。在这项工作中,我们还概述了接受和验证化学信息学模型和新生物材料特性的监管问题。这是一个主要问题,以便使科学结果对人类和环境具有自我性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验