Department of Mechanical Engineering, Center for Dynamic Systems Modeling and Control, Virginia Tech, Blacksburg, VA, United States of America.
J Neural Eng. 2018 Oct;15(5):056031. doi: 10.1088/1741-2552/aad96e. Epub 2018 Aug 10.
The objective of this paper is to didactically compare resting state connectivity networks computed using two different methods called phase locking value (PLV) and convergent cross-mapping (CCM). PLV is a ubiquitous measure of connectivity in electrophysiological research but is less often applied to fMRI BOLD timeseries since this model-based metric assumes that oscillatory coupling is a sufficient condition for connectivity. Alternatively, CCM is a model-free method, which detects potentially nonlinear causal influences based on the ability to estimate one timeseries with another and does not assume an oscillatory structure.
We use a toy dataset to test the PLV and CCM algorithms under different known synchronization conditions. Additionally, experimental resting state EEG and fMRI datasets are used for comparison.
The results show that the resting state brain networks computed using both algorithms produce similar results for both resting state EEG and fMRI datasets. For both neuroimaging datasets, the network characteristics follow the same trends and the similarity between the computed networks, for both algorithms, is highly significant.
CCM is able to identify low or one-way connection strengths better than PLV but takes exponentially longer to compute. Based on these results, PLV provides a good metric for on-line network identification because it is both computationally fast and an excellent approximation of the network computed with CCM.
本文旨在从教学的角度比较两种不同的方法(相位锁定值[PLV]和会聚交叉映射[CCM])计算静息状态连接网络。PLV 是电生理学研究中普遍的连接度量方法,但较少应用于 fMRI BOLD 时间序列,因为这种基于模型的度量方法假设振荡耦合是连接的充分条件。相比之下,CCM 是一种无模型方法,它基于能够用另一个时间序列估计一个时间序列的能力来检测潜在的非线性因果影响,并且不假设振荡结构。
我们使用一个玩具数据集来测试 PLV 和 CCM 算法在不同已知同步条件下的性能。此外,还使用实验性静息态 EEG 和 fMRI 数据集进行比较。
结果表明,使用这两种算法计算的静息状态大脑网络对于静息态 EEG 和 fMRI 数据集都产生了相似的结果。对于这两个神经影像学数据集,网络特征遵循相同的趋势,并且两种算法计算的网络之间的相似性非常显著。
CCM 能够比 PLV 更好地识别低或单向连接强度,但计算时间要长得多。基于这些结果,PLV 提供了一种用于在线网络识别的良好度量方法,因为它计算速度快,并且是与 CCM 计算的网络非常接近的近似值。