Suppr超能文献

光敏色素与植物激素:协同作用促进植物生长发育

Phytochrome and Phytohormones: Working in Tandem for Plant Growth and Development.

作者信息

Lymperopoulos Panagiotis, Msanne Joseph, Rabara Roel

机构信息

New Mexico Consortium, Los Alamos, NM, United States.

出版信息

Front Plant Sci. 2018 Jul 27;9:1037. doi: 10.3389/fpls.2018.01037. eCollection 2018.

Abstract

Being sessile organisms, plants need to continually adapt and modulate their rate of growth and development in accordance with the changing environmental conditions, a phenomenon referred to as plasticity. Plasticity in plants is a highly complex process that involves a well-coordinated interaction between different signaling pathways, the spatiotemporal involvement of phytohormones and cues from the environment. Though research studies are being carried out over the years to understand how plants perceive the signals from changing environmental conditions and activate plasticity, such remain a mystery to be resolved. Among all environmental cues, the light seems to be the stand out factor influencing plant growth and development. During the course of evolution, plants have developed well-equipped signaling system that enables regulation of both quantitative and qualitative differences in the amount of perceived light. Light influences essential developmental switches in plants ranging from germination or transition to flowering, photomorphogenesis, as well as switches in response to shade avoidances and architectural changes occurring during phototropism. Abscisic acid (ABA) is controlling seed germination and is regulated by light. Furthermore, circadian clock adds another level of regulation to plant growth by integrating light signals with different hormonal pathways. MYB96 has been identified as a regulator of circadian gating of ABA-mediated responses in plants by binding to the () promoter. This review will present a representative regulatory model, highlight the successes achieved in employing novel strategies to dissect the levels of interaction and provide perspective for future research on phytochrome-phytohormones relationships toward facilitating plant growth, development, and function under abiotic-biotic stresses.

摘要

作为固着生物,植物需要根据不断变化的环境条件持续调整和调节其生长和发育速率,这一现象被称为可塑性。植物的可塑性是一个高度复杂的过程,涉及不同信号通路之间的协调相互作用、植物激素的时空参与以及来自环境的线索。尽管多年来一直在进行研究以了解植物如何感知环境条件变化的信号并激活可塑性,但这仍然是一个有待解决的谜团。在所有环境线索中,光照似乎是影响植物生长和发育的突出因素。在进化过程中,植物已经发展出完善的信号系统,能够调节所感知光量的数量和质量差异。光照影响植物从发芽或过渡到开花、光形态建成等基本发育转换,以及对避荫反应和向光性过程中发生的结构变化的转换。脱落酸(ABA)控制种子萌发并受光照调节。此外,生物钟通过将光信号与不同激素途径整合,为植物生长增加了另一层调节。MYB96已被确定为通过与()启动子结合来调节植物中ABA介导反应的昼夜节律门控的调节因子。本综述将呈现一个代表性的调节模型,突出在采用新策略剖析相互作用水平方面取得的成功,并为未来关于植物色素 - 植物激素关系的研究提供视角,以促进植物在非生物 - 生物胁迫下的生长、发育和功能。

相似文献

1
Phytochrome and Phytohormones: Working in Tandem for Plant Growth and Development.
Front Plant Sci. 2018 Jul 27;9:1037. doi: 10.3389/fpls.2018.01037. eCollection 2018.
2
MYB96 shapes the circadian gating of ABA signaling in Arabidopsis.
Sci Rep. 2016 Jan 4;6:17754. doi: 10.1038/srep17754.
4
Plant hormone-mediated regulation of stress responses.
BMC Plant Biol. 2016 Apr 14;16:86. doi: 10.1186/s12870-016-0771-y.
5
A functional connection between the clock component TOC1 and abscisic acid signaling pathways.
Plant Signal Behav. 2010 Apr;5(4):409-11. doi: 10.4161/psb.5.4.11213. Epub 2010 Apr 14.
6
Light-Mediated Hormonal Regulation of Plant Growth and Development.
Annu Rev Plant Biol. 2016 Apr 29;67:513-37. doi: 10.1146/annurev-arplant-043015-112252. Epub 2016 Feb 22.
7
Functions of Phytochrome-Interacting Factors (PIFs) in the regulation of plant growth and development: A comprehensive review.
Int J Biol Macromol. 2023 Jul 31;244:125234. doi: 10.1016/j.ijbiomac.2023.125234. Epub 2023 Jun 7.
9
Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid.
Front Plant Sci. 2018 Jun 20;9:838. doi: 10.3389/fpls.2018.00838. eCollection 2018.

引用本文的文献

3
Novel insight of the SVP gene involved in pedicel length based on genomics analysis in cherry.
Plant Cell Rep. 2025 Feb 5;44(2):50. doi: 10.1007/s00299-025-03439-4.
7
MADS-Box Family Genes in and Their Involvement in Flower Development.
Plants (Basel). 2024 Mar 1;13(5):709. doi: 10.3390/plants13050709.
9
The Multifaceted Role of Jasmonic Acid in Plant Stress Mitigation: An Overview.
Plants (Basel). 2023 Nov 27;12(23):3982. doi: 10.3390/plants12233982.
10
Physiological Properties of Perennial Rice Regenerating Cultivation in Two Years with Four Harvests.
Plants (Basel). 2023 Nov 20;12(22):3910. doi: 10.3390/plants12223910.

本文引用的文献

1
The F-box protein FKF1 inhibits dimerization of COP1 in the control of photoperiodic flowering.
Nat Commun. 2017 Dec 22;8(1):2259. doi: 10.1038/s41467-017-02476-2.
2
Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization.
Front Plant Sci. 2017 Oct 10;8:1735. doi: 10.3389/fpls.2017.01735. eCollection 2017.
4
7
Molecular mechanisms and ecological function of far-red light signalling.
Plant Cell Environ. 2017 Nov;40(11):2509-2529. doi: 10.1111/pce.12915. Epub 2017 Mar 27.
8
Nitric Oxide Overproduction in Tomato Mutant Shifts Metabolic Profiles and Suppresses Fruit Growth and Ripening.
Front Plant Sci. 2016 Nov 28;7:1714. doi: 10.3389/fpls.2016.01714. eCollection 2016.
9
Auxin production in the endosperm drives seed coat development in .
Elife. 2016 Nov 16;5:e20542. doi: 10.7554/eLife.20542.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验