Pandolfi Silvia, Renero-Lecuna Carlos, Le Godec Yann, Baptiste Benoit, Menguy Nicolas, Lazzeri Michele, Gervais Christel, Spektor Kristina, Crichton Wilson A, Kurakevych Oleksandr O
Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu , 75005 Paris , France.
Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 Place Jussieu , 75252 Paris cedex 05, France.
Nano Lett. 2018 Sep 12;18(9):5989-5995. doi: 10.1021/acs.nanolett.8b02816. Epub 2018 Aug 20.
Hexagonal Si allotropes are expected to enhance light absorption in the visible range as compared to common cubic Si with diamond structure. Therefore, synthesis of these materials is crucial for the development of Si-based optoelectronics. In this work, we combine in situ high-pressure high-temperature synthesis and vacuum heating to obtain hexagonal Si. High pressure is one of the most promising routes to stabilize these allotropes. It allows one to obtain large-volume nanostructured ingots by a sequence of direct solid-solid transformations, ensuring high-purity samples for detailed characterization. Thanks to our synthesis approach, we provide the first evidence of a polycrystalline bulk sample of hexagonal Si. Exhaustive structural analysis, combining fine-powder X-ray and electron diffraction, afforded resolution of the crystal structure. We demonstrate that hexagonal Si obtained by high-pressure synthesis correspond to Si-4H polytype (ABCB stacking) in contrast with Si-2H (AB stacking) proposed previously. This result agrees with prior calculations that predicted a higher stability of the 4H form over 2H form. Further physical characterization, combining experimental data and ab initio calculations, have shown a good agreement with the established structure. Strong photoluminescence emission was observed in the visible region for which we foresee optimistic perspectives for the use of this material in Si-based photovoltaics.
与常见的具有金刚石结构的立方硅相比,六角形硅的同素异形体有望增强在可见光范围内的光吸收。因此,这些材料的合成对于硅基光电子学的发展至关重要。在这项工作中,我们将原位高压高温合成与真空加热相结合以获得六角形硅。高压是稳定这些同素异形体最有前景的途径之一。它使人们能够通过一系列直接的固 - 固转变获得大体积的纳米结构晶锭,确保获得用于详细表征的高纯度样品。由于我们的合成方法,我们提供了六角形硅多晶块状样品的首个证据。结合细粉X射线和电子衍射的详尽结构分析,解析了晶体结构。我们证明,通过高压合成获得的六角形硅对应于Si - 4H多型(ABCB堆积),这与先前提出的Si - 2H(AB堆积)形成对比。这一结果与先前预测4H形式比2H形式具有更高稳定性的计算结果一致。结合实验数据和从头算计算的进一步物理表征,与已确定的结构显示出良好的一致性。在可见光区域观察到了强烈的光致发光发射,我们预见到这种材料在硅基光伏中的应用前景乐观。