The Phenomics Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia.
Cytometry A. 2018 Aug;93(8):837-847. doi: 10.1002/cyto.a.23510. Epub 2018 Aug 13.
An increased interest in implementations of Lab-on-a-Chip (LOC) technologies for in-situ analysis of multicellular metazoan model organisms and their embryonic stages demands development of new prototyping techniques. Due to size of multicellular organisms the fabrication of soft-lithography molds requires features with high aspect ratios as well as deposition of layers with significant thicknesses. This makes them time consuming and difficult to fabricate using conventional photolithography techniques. In this work we describe development of a rapid technique capable of generating thick films achieved with high viscosity SU-8 and used in fabricating master templates for high aspect ratio micro- and mesofluidic devices. The cost effective and rapid method eliminated the need for multiple spin coating cycles as well as edge bead artifacts while preserving low surface roughness and superior surface uniformity. Due to elimination of spin coating steps, typically constrained to clean room facilities, the new method allows to significantly reduce microfabrication costs. We have utilized the prototyping technique to develop proof-of-concept chip-based devices capable of effectively caging freshwater rotifers Brachionus calyciflorus for high-definition video-microscopy analysis. The combination of time-resolved video-microscopy and chip-based physiometers enabled us to demonstrate new applications for neurobehavioral assays utilizing non-invasive sub-lethal end-points.
人们对微流控芯片(LOC)技术在多细胞后生动物模型生物及其胚胎阶段的原位分析中的应用越来越感兴趣,这就需要开发新的原型制作技术。由于多细胞生物的体积较大,软光刻模具的制造需要具有高纵横比的特征,以及具有显著厚度的层的沉积。这使得它们耗时且难以使用传统的光刻技术制造。在这项工作中,我们描述了一种快速技术的开发,该技术能够生成具有高粘度 SU-8 的厚膜,并用于制造用于高纵横比微流控和介观流控器件的主模板。这种具有成本效益和快速的方法消除了对多次旋涂循环以及边缘珠状瑕疵的需求,同时保持了低表面粗糙度和卓越的表面均匀性。由于消除了旋涂步骤,通常限于洁净室设施,因此新方法可以显著降低微制造成本。我们已经利用原型制作技术开发了概念验证型基于芯片的设备,能够有效地将淡水轮虫 Brachionus calyciflorus 困在其中,用于高清视频显微镜分析。时间分辨视频显微镜和基于芯片的生理计的组合使我们能够展示利用非侵入性亚致死终点进行神经行为测定的新应用。