Suppr超能文献

用于混合尺度微流控芯片的非常规微纳加工技术。

Unconventional micro-/nanofabrication technologies for hybrid-scale lab-on-a-chip.

机构信息

Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.

出版信息

Lab Chip. 2016 Nov 1;16(22):4296-4312. doi: 10.1039/c6lc01058j.

Abstract

Micro-/nanofabrication-based lab-on-a-chip (LOC) technologies have recently been substantially advanced and have become widely used in various inter-/multidisciplinary research fields, including biological, (bio-)chemical, and biomedical fields. However, such hybrid-scale LOC devices are typically fabricated using microfabrication and nanofabrication processes in series, resulting in increased cost and time and low throughput issues. In this review, after briefly introducing the conventional micro-/nanofabrication technologies, we focus on unconventional micro-/nanofabrication technologies that allow us to produce either in situ micro-/nanoscale structures or master molds for additional replication processes to easily and conveniently create novel LOC devices with micro- or nanofluidic channel networks. In particular, microfabrication methods based on crack-assisted photolithography and carbon-microelectromechanical systems (C-MEMS) are described in detail because of their superior features from the viewpoint of the throughput, batch fabrication process, and mixed-scale channels/structures. In parallel with previously reported articles on conventional micro-/nanofabrication technologies, our review of unconventional micro-/nanofabrication technologies will provide a useful and practical fabrication guideline for future hybrid-scale LOC devices.

摘要

基于微纳加工的微流控芯片(LOC)技术近年来取得了重大进展,并已广泛应用于包括生物、(生物)化学和生物医学等多个跨学科研究领域。然而,这种混合尺度的 LOC 器件通常采用微纳加工技术的串行工艺制造,这会导致成本和时间增加,以及产量低等问题。在这篇综述中,我们在简要介绍传统微纳加工技术之后,重点介绍了非传统的微纳加工技术,这些技术可以原位生成微纳尺度结构或母模,以便通过额外的复制工艺来轻松便捷地制造具有微纳流道网络的新型 LOC 器件。特别地,我们详细描述了基于裂纹辅助光刻和碳微机电系统(C-MEMS)的微纳加工方法,因为从产量、批处理制造工艺和混合尺度通道/结构的角度来看,这些方法具有卓越的特性。与传统微纳加工技术的先前报道文章并行,我们对非传统微纳加工技术的综述将为未来的混合尺度 LOC 器件提供有用且实用的制造指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验