Suppr超能文献

基于脑机接口的智能家居系统控制

Controlling of smart home system based on brain-computer interface.

作者信息

Gao Qiang, Zhao Xuewen, Yu Xiao, Song Yu, Wang Zhe

机构信息

Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, Tianjin University of Technology, Tianjin 300384, China.

Graduate School of Engineering, Kagawa University, Kagawa 760 8521, Japan.

出版信息

Technol Health Care. 2018;26(5):769-783. doi: 10.3233/THC-181292.

Abstract

BACKGROUND

Brain computer interface (BCI) technology is a communication and control approach. Up to now many studies have attempted to develop an EEG-based BCI system to improve the quality of life of people with severe disabilities, such as amyotrophic lateral sclerosis (ALS), paralysis, brain stroke and so on. The proposed BCIBSHS could help to provide a new way for supporting life of paralyzed people and elderly people.

OBJECTIVE

The goal of this paper is to explore how to set up a cost-effective and safe-to-use online BCIBSHS to recognize multi-commands and control smart devices based on SSVEP.

METHODS

The portable EEG acquisition device (Emotiv EPOC) was used to collect EEG signals. The raw signals were denoised by discrete wavelet transform (DWT) method, and then the canonical correlation analysis (CCA) method was used for feature extraction and classification. Another part is the control of smart home devices. The classification results of SSVEP can be translated into commands to control several devices for the smart home.

RESULTS

Here, the Power over Ethernet (PoE) technology was utilized to provide electrical energy and communication for those devices. During online experiments, four different control commands have been achieved to control four smart home devices (lamp, web camera, guardianship telephone and intelligent blinds). Experimental results showed that the online BCIBSHS obtained 86.88 ± 5.30% average classification accuracy rate.

CONCLUSION

The BCI and PoE technology, combined with smart home system, overcoming the shortcomings of traditional systems and achieving home applications management rely on EEG signal. In this paper, we proposed an online steady-state visual evoked potential (SSVEP) based BCI system on controlling several smart home devices.

摘要

背景

脑机接口(BCI)技术是一种通信和控制方法。到目前为止,许多研究试图开发基于脑电图的BCI系统,以改善严重残疾人士的生活质量,如肌萎缩侧索硬化症(ALS)、瘫痪、中风等。所提出的BCIBSHS有助于为瘫痪者和老年人的生活提供一种新的支持方式。

目的

本文的目标是探索如何建立一个经济高效且使用安全的在线BCIBSHS,以基于稳态视觉诱发电位(SSVEP)识别多指令并控制智能设备。

方法

使用便携式脑电图采集设备(Emotiv EPOC)收集脑电图信号。原始信号通过离散小波变换(DWT)方法去噪,然后使用典型相关分析(CCA)方法进行特征提取和分类。另一部分是智能家居设备的控制。SSVEP的分类结果可以转换为命令,以控制智能家居的多个设备。

结果

在这里,利用以太网供电(PoE)技术为这些设备提供电能和通信。在在线实验中,实现了四种不同的控制命令,以控制四个智能家居设备(灯、网络摄像头、监护电话和智能百叶窗)。实验结果表明,在线BCIBSHS的平均分类准确率为86.88±5.30%。

结论

BCI和PoE技术与智能家居系统相结合,克服了传统系统的缺点,实现了基于脑电信号的家庭应用管理。在本文中,我们提出了一种基于在线稳态视觉诱发电位(SSVEP)的BCI系统,用于控制多个智能家居设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验