Suppr超能文献

基于 SSVEP 的智能家庭服务机器人系统的实现。

Implementation of an SSVEP-based intelligent home service robot system.

出版信息

Technol Health Care. 2021;29(3):541-556. doi: 10.3233/THC-202442.

Abstract

BACKGROUND

People with severe neuromuscular disorders caused by an accident or congenital disease cannot normally interact with the physical environment. The intelligent robot technology offers the possibility to solve this problem. However, the robot can hardly carry out the task without understanding the subject's intention as it relays on speech or gestures. Brain-computer interface (BCI), a communication system that operates external devices by directly converting brain activity into digital signals, provides a solution for this.

OBJECTIVE

In this study, a noninvasive BCI-based humanoid robotic system was designed and implemented for home service.

METHODS

A humanoid robot that is equipped with multi-sensors navigates to the object placement area under the guidance of a specific symbol "Naomark", which has a unique ID, and then sends the information of the scanned object back to the user interface. Based on this information, the subject gives commands to the robot to grab the wanted object and give it to the subject. To identify the subject's intention, the channel projection-based canonical correlation analysis (CP-CCA) method was utilized for the steady state visual evoked potential-based BCI system.

RESULTS

The offline results showed that the average classification accuracy of all subjects reached 90%, and the online task completion rate was over 95%.

CONCLUSION

Users can complete the grab task with minimum commands, avoiding the control burden caused by complex commands. This would provide a useful assistance means for people with severe motor impairment in their daily life.

摘要

背景

因意外或先天性疾病导致严重神经肌肉障碍的人通常无法与物理环境正常交互。智能机器人技术为此提供了一种可能性。然而,机器人如果无法理解主体的意图(例如通过语音或手势),就很难完成任务。脑机接口(BCI)是一种通过直接将大脑活动转换为数字信号来操作外部设备的通信系统,为解决这个问题提供了一种方法。

目的

本研究设计并实现了一种基于非侵入性 BCI 的人形机器人系统,用于家庭服务。

方法

配备多传感器的人形机器人在特定符号“Naomark”(具有唯一 ID)的引导下导航到目标放置区域,然后将扫描到的目标信息发送回用户界面。基于此信息,主体向机器人发出抓取目标并交给主体的命令。为了识别主体的意图,使用基于通道投影的典型相关分析(CP-CCA)方法对基于稳态视觉诱发电位的 BCI 系统进行分析。

结果

离线结果表明,所有主体的平均分类准确率均达到 90%,在线任务完成率超过 95%。

结论

用户可以用最少的指令完成抓取任务,避免了复杂指令带来的控制负担。这将为严重运动障碍的人在日常生活中提供一种有用的辅助手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验