Suppr超能文献

氧化锌纳米颗粒对茄子的影响():生长和纳米颗粒积累的研究。

Impact of Zinc oxide nanoparticles on eggplant (): studies on growth and the accumulation of nanoparticles.

机构信息

Division of Biotechnology, Jain University, Bangalore, India.

Division of Floriculture and Medicinal crops, Indian Institute of Horticultural Research, Hesserghatta, Bangalore, India.

出版信息

IET Nanobiotechnol. 2018 Sep;12(6):706-713. doi: 10.1049/iet-nbt.2017.0237.

Abstract

The increasing use of nanoparticles and their occurrence in the environment has made it imperative to elucidate their impact on the environment. Although several studies have advanced the authors' understanding of nanoparticle-plant interactions, their knowledge of the exposure of plants to nanoparticles and their effects on edible crop plants remain meager and is often paradoxical. The aim of this study was to increase their knowledge on the effect of zinc oxide (ZnO) nanoparticles on eggplant seed germination and seedling growth. ZnO nanoparticles had a negative effect on the growth of eggplant in plant tissue-culture conditions, as the growth of seedlings decreased with the increase in the concentration of ZnO nanoparticles. In contrast, ZnO nanoparticles enhanced eggplant growth under greenhouse conditions. The accumulation of ZnO nanoparticles in various parts of eggplant was observed through scanning electron microscopy of both plant tissue-culture and greenhouse-raised eggplant seedlings. To the best of their knowledge, this is the first study to report on ZnO nanoparticle accumulation in eggplant and its effect on seed germination and seedling growth.

摘要

纳米粒子的使用日益增多,且它们在环境中的存在已成为当务之急,阐明其对环境的影响。尽管有几项研究加深了人们对纳米颗粒-植物相互作用的理解,但对于植物暴露于纳米颗粒及其对可食用作物的影响,他们的了解仍然很少,而且往往相互矛盾。本研究旨在增进人们对氧化锌(ZnO)纳米粒子对茄子种子萌发和幼苗生长的影响的认识。ZnO 纳米粒子对茄子的组织培养条件下的生长有负面影响,因为随着 ZnO 纳米粒子浓度的增加,幼苗的生长减少。相比之下,ZnO 纳米粒子在温室条件下促进了茄子的生长。通过对组织培养和温室培养的茄子幼苗进行扫描电子显微镜观察,观察到 ZnO 纳米粒子在茄子各个部位的积累。据他们所知,这是首次报道 ZnO 纳米粒子在茄子中的积累及其对种子萌发和幼苗生长的影响的研究。

相似文献

1
Impact of Zinc oxide nanoparticles on eggplant (): studies on growth and the accumulation of nanoparticles.
IET Nanobiotechnol. 2018 Sep;12(6):706-713. doi: 10.1049/iet-nbt.2017.0237.
5
Assessment of toxic interaction of nano zinc oxide and nano copper oxide on germination of Raphanus sativus seeds.
Environ Monit Assess. 2019 Oct 31;191(11):703. doi: 10.1007/s10661-019-7902-5.
7
Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene.
Environ Pollut. 2019 Apr;247:108-117. doi: 10.1016/j.envpol.2019.01.046. Epub 2019 Jan 14.
10
Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds.
Environ Sci Pollut Res Int. 2015 Jul;22(14):10452-62. doi: 10.1007/s11356-015-4172-9. Epub 2015 Feb 28.

引用本文的文献

1
The Role of Nano-Fertilizers in Sustainable Agriculture: Boosting Crop Yields and Enhancing Quality.
Plants (Basel). 2025 Feb 11;14(4):554. doi: 10.3390/plants14040554.
2
Enhancing plant resilience: Nanotech solutions for sustainable agriculture.
Heliyon. 2024 Nov 30;10(23):e40735. doi: 10.1016/j.heliyon.2024.e40735. eCollection 2024 Dec 15.
3
Nanoparticles: The Plant Saviour under Abiotic Stresses.
Nanomaterials (Basel). 2022 Nov 6;12(21):3915. doi: 10.3390/nano12213915.
6
Nano-biofortification of different crops to immune against COVID-19: A review.
Ecotoxicol Environ Saf. 2021 Oct 1;222:112500. doi: 10.1016/j.ecoenv.2021.112500. Epub 2021 Jul 10.
8
Nanofomulation of zinc oxide and chitosan zinc sustain oxidative stress and alter secondary metabolite profile in tobacco.
3 Biotech. 2020 Nov;10(11):477. doi: 10.1007/s13205-020-02469-x. Epub 2020 Oct 16.

本文引用的文献

2
ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties.
Mater Sci Eng C Mater Biol Appl. 2017 May 1;74:137-145. doi: 10.1016/j.msec.2017.01.004. Epub 2017 Feb 3.
3
Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest.
Mutat Res Genet Toxicol Environ Mutagen. 2016 Sep 1;807:25-32. doi: 10.1016/j.mrgentox.2016.07.006. Epub 2016 Jul 27.
4
Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review.
J Hazard Mater. 2017 Jan 15;322(Pt A):2-16. doi: 10.1016/j.jhazmat.2016.05.061. Epub 2016 May 20.
5
Effect of ZnO Nanoparticles on Brassica nigra Seedlings and Stem Explants: Growth Dynamics and Antioxidative Response.
Front Plant Sci. 2016 Apr 20;7:535. doi: 10.3389/fpls.2016.00535. eCollection 2016.
7
Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.).
Int J Environ Res Public Health. 2015 Nov 30;12(12):15100-9. doi: 10.3390/ijerph121214963.
9
Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).
J Agric Food Chem. 2015 Jan 21;63(2):382-90. doi: 10.1021/jf5052442. Epub 2015 Jan 7.
10
Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton.
J Nanobiotechnology. 2014 Dec 5;12:50. doi: 10.1186/s12951-014-0050-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验