Department of Mechanical Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, Japan.
Toyota Motor Corporation, Toyota-cho, Toyota, Aichi, Japan.
Nanoscale. 2018 Aug 30;10(34):16013-16021. doi: 10.1039/c8nr03332c.
Various physical properties of functional materials can be induced by controlling their chemical molecular structures. Therefore, molecular design is crucial in the fields of engineering and materials science. With its remarkable development in various fields, machine learning combined with molecular simulation has recently been found to be effective at predicting the electronic structure of materials (Nat. Commun., 2017, 8, 872 and Nat. Commun., 2017, 8, 13890). However, previous studies have used similar microscale information as input and output data for machine learning, i.e., molecular structures and electronic structures. In this study, we determined whether multiscale data can be predicted using machine learning via a self-assembly functional material system. In particular, we investigated whether machine learning can be used to predict dispersion and viscosity, as the representative physical properties of a self-assembled surfactant solution, from the chemical molecular structures of a surfactant. The results showed that relatively accurate information on these physical properties can be predicted from the molecular structure, suggesting that machine learning can be used to predict multiscale systems, such as surfactant molecules, self-assembled micelle structures, and physical properties of solutions. The results of this study will aid in further development of the application of machine learning to materials science and molecular design.
各种功能材料的物理性质可以通过控制其化学分子结构来诱导。因此,分子设计在工程和材料科学领域至关重要。随着机器学习在各个领域的显著发展,人们最近发现机器学习与分子模拟相结合在预测材料的电子结构方面非常有效(Nat. Commun.,2017,8,872 和 Nat. Commun.,2017,8,13890)。然而,以前的研究使用相似的微观信息作为输入和输出数据进行机器学习,即分子结构和电子结构。在这项研究中,我们通过自组装功能材料体系来确定是否可以使用机器学习来预测多尺度数据。具体来说,我们研究了机器学习是否可以用于从表面活性剂的化学分子结构预测分散体和粘度等自组装表面活性剂溶液的代表性物理性质。结果表明,从分子结构可以预测这些物理性质的相对准确的信息,这表明机器学习可用于预测多尺度系统,例如表面活性剂分子、自组装胶束结构和溶液的物理性质。这项研究的结果将有助于进一步发展机器学习在材料科学和分子设计中的应用。