Suppr超能文献

肺炎链球菌唾液酸酶 SpNanB 催化的一锅多酶(OPME)合成 2,7-脱水唾液酸作为选择性唾液酸酶抑制剂。

Streptococcus pneumoniae Sialidase SpNanB-Catalyzed One-Pot Multienzyme (OPME) Synthesis of 2,7-Anhydro-Sialic Acids as Selective Sialidase Inhibitors.

机构信息

Department of Chemistry , University of California , One Shields Avenue , Davis , California 95616 , United States.

Children's National Medical Center , 111 Michigan Ave , NW, Washington, DC 20012 , United States.

出版信息

J Org Chem. 2018 Sep 21;83(18):10798-10804. doi: 10.1021/acs.joc.8b01519. Epub 2018 Aug 23.

Abstract

Streptococcus pneumoniae sialidase SpNanB is an intramolecular trans-sialidase (IT-sialidase) and a virulence factor that is essential for streptococcal infection of the upper and lower respiratory tract. SpNanB catalyzes the formation of 2,7-anhydro- N-acetylneuraminic acid (2,7-anhydro-Neu5Ac), a potential prebiotic that can be used as the sole carbon source of a common human gut commensal anaerobic bacterium. We report here the development of an efficient one-pot multienzyme (OPME) system for synthesizing 2,7-anhydro-Neu5Ac and its derivatives. Based on a crystal structure analysis, an N-cyclohexyl derivative of 2,7-anhydro-neuraminic acid was designed, synthesized, and shown to be a selective inhibitor against SpNanB and another Streptococcus pneumoniae sialidase SpNanC. This study demonstrates a new strategy of synthesizing 2,7-anhydro-sialic acids in a gram scale and the potential application of their derivatives as selective sialidase inhibitors.

摘要

肺炎链球菌唾液酸酶 SpNanB 是一种分子内转唾液酸酶(IT-唾液酸酶)和一种毒力因子,对于链球菌在上呼吸道和下呼吸道的感染是必不可少的。SpNanB 催化 2,7-脱水-N-乙酰神经氨酸(2,7-anhydro-Neu5Ac)的形成,这是一种潜在的益生元,可以作为一种常见的人类肠道共生厌氧细菌的唯一碳源。我们在这里报告了一种用于合成 2,7-脱水-Neu5Ac 及其衍生物的高效一锅多酶(OPME)系统的开发。基于晶体结构分析,设计、合成了 2,7-脱水-神经氨酸的 N-环己基衍生物,并证明它是 SpNanB 和另一种肺炎链球菌唾液酸酶 SpNanC 的选择性抑制剂。本研究展示了在克级规模上合成 2,7-脱水唾液酸的新策略,以及它们的衍生物作为选择性唾液酸酶抑制剂的潜在应用。

相似文献

2
Structural and functional studies of Streptococcus pneumoniae neuraminidase B: An intramolecular trans-sialidase.
FEBS Lett. 2008 Oct 15;582(23-24):3348-52. doi: 10.1016/j.febslet.2008.08.026. Epub 2008 Sep 5.
3
Membrane-enclosed multienzyme (MEME) synthesis of 2,7-anhydro-sialic acid derivatives.
Carbohydr Res. 2017 Nov 8;451:110-117. doi: 10.1016/j.carres.2017.08.008. Epub 2017 Aug 19.
4
The synthesis of a series of deoxygenated 2,3-difluoro-N-acteylneuraminic acid derivatives as potential sialidase inhibitors.
Carbohydr Res. 2013 Jun 7;374:23-8. doi: 10.1016/j.carres.2013.03.026. Epub 2013 Apr 2.
5
Three Streptococcus pneumoniae sialidases: three different products.
J Am Chem Soc. 2011 Feb 16;133(6):1718-21. doi: 10.1021/ja110733q. Epub 2011 Jan 18.
8
Towards the synthesis of sialic acid-based Salmonella typhimurium sialidase inhibitors.
Carbohydr Res. 1995 Sep 8;274:279-83. doi: 10.1016/0008-6215(95)00128-g.
9
9-Azido-9-deoxy-2,3-difluorosialic Acid as a Subnanomolar Inhibitor against Bacterial Sialidases.
J Org Chem. 2019 Jun 7;84(11):6697-6708. doi: 10.1021/acs.joc.9b00385. Epub 2019 May 24.
10
Sialidase-catalyzed one-pot multienzyme (OPME) synthesis of sialidase transition-state analogue inhibitors.
ACS Catal. 2018 Jan 5;8(1):43-47. doi: 10.1021/acscatal.7b03257. Epub 2017 Nov 21.

引用本文的文献

1
Synthetic Sialosides Terminated with 8-N-Substituted Sialic Acid as Selective Substrates for Sialidases from Bacteria and Influenza Viruses.
Angew Chem Int Ed Engl. 2024 Jul 15;63(29):e202403133. doi: 10.1002/anie.202403133. Epub 2024 Jun 14.
2
Enabling Chemoenzymatic Strategies and Enzymes for Synthesizing Sialyl Glycans and Sialyl Glycoconjugates.
Acc Chem Res. 2024 Jan 16;57(2):234-246. doi: 10.1021/acs.accounts.3c00614. Epub 2023 Dec 21.
3
Sialosides Containing 7--Acetyl Sialic Acid Are Selective Substrates for Neuraminidases from Influenza A Viruses.
ACS Infect Dis. 2023 Jan 13;9(1):33-41. doi: 10.1021/acsinfecdis.2c00502. Epub 2022 Dec 1.
4
Sialidase Inhibitors with Different Mechanisms.
J Med Chem. 2022 Oct 27;65(20):13574-13593. doi: 10.1021/acs.jmedchem.2c01258. Epub 2022 Oct 17.
5
Recent progress in chemical approaches for the development of novel neuraminidase inhibitors.
RSC Adv. 2021 Jan 6;11(3):1804-1840. doi: 10.1039/d0ra07283d. eCollection 2021 Jan 4.
7
SnCl-catalyzed solvent-free acetolysis of 2,7-anhydrosialic acid derivatives.
Beilstein J Org Chem. 2019 Dec 23;15:2990-2999. doi: 10.3762/bjoc.15.295. eCollection 2019.
9
A substrate tagging and two-step enzymatic reaction strategy for large-scale synthesis of 2,7-anhydro-sialic acid.
Carbohydr Res. 2019 Jun 1;479:41-47. doi: 10.1016/j.carres.2019.05.002. Epub 2019 May 16.
10
9-Azido-9-deoxy-2,3-difluorosialic Acid as a Subnanomolar Inhibitor against Bacterial Sialidases.
J Org Chem. 2019 Jun 7;84(11):6697-6708. doi: 10.1021/acs.joc.9b00385. Epub 2019 May 24.

本文引用的文献

1
Sialidase-catalyzed one-pot multienzyme (OPME) synthesis of sialidase transition-state analogue inhibitors.
ACS Catal. 2018 Jan 5;8(1):43-47. doi: 10.1021/acscatal.7b03257. Epub 2017 Nov 21.
2
Concise synthesis of 2,7-anhydrosialic acid derivatives and its application.
Carbohydr Res. 2017 Dec 1;453-454:44-53. doi: 10.1016/j.carres.2017.10.007. Epub 2017 Oct 19.
3
Membrane-enclosed multienzyme (MEME) synthesis of 2,7-anhydro-sialic acid derivatives.
Carbohydr Res. 2017 Nov 8;451:110-117. doi: 10.1016/j.carres.2017.08.008. Epub 2017 Aug 19.
4
Sialidase inhibitory activity of diarylnonanoid and neolignan compounds extracted from the seeds of Myristica fragrans.
Bioorg Med Chem Lett. 2017 Jul 15;27(14):3060-3064. doi: 10.1016/j.bmcl.2017.05.055. Epub 2017 May 18.
5
Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases.
Front Microbiol. 2017 Feb 15;8:205. doi: 10.3389/fmicb.2017.00205. eCollection 2017.
8
The mucin-degradation strategy of Ruminococcus gnavus: The importance of intramolecular trans-sialidases.
Gut Microbes. 2016 Jul 3;7(4):302-312. doi: 10.1080/19490976.2016.1186334. Epub 2016 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验