Suppr超能文献

一种用于 2,7-脱水唾液酸大规模合成的底物标记和两步酶反应策略。

A substrate tagging and two-step enzymatic reaction strategy for large-scale synthesis of 2,7-anhydro-sialic acid.

机构信息

Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.

Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.

出版信息

Carbohydr Res. 2019 Jun 1;479:41-47. doi: 10.1016/j.carres.2019.05.002. Epub 2019 May 16.

Abstract

A sialyltransferase acceptor tagging and two-step enzymatic reaction strategy has been developed for multigram-scale chemoenzymatic synthesis of 2,7-anhydro-N-acetylneuraminic acid (2,7-anhydro-Neu5Ac), a compound that can serve as a sole carbon source for the growth of Ruminococcus gnavus, a common human gut commensal. Different approaches of introducing hydrophobic UV-active tags to lactose as well-suited sialyltransferase acceptors have been explored and a simple two-step high-yield chemical synthetic procedure has been identified. The UV-active hydrophobic tag facilitates monitoring reaction progress and allows facile product purification by C18-cartridges. A two-step enzyme-catalyzed reaction procedure has been established to combine with C18 cartridge-based purification process for high-yield production of the desired product in multigram scales with the recycled use of chromophore-tagged lactoside starting material and sialoside intermediate. This study demonstrated an environmentally friendly highly-efficient synthetic and purification strategy for the production of 2,7-anhydro-Neu5Ac to explore its potential functions.

摘要

已开发出一种唾液酸转移酶受体标记和两步酶反应策略,用于大规模化化学酶法合成 2,7-脱水-N-乙酰神经氨酸(2,7-脱水-Neu5Ac),该化合物可作为普通人类肠道共生菌 Ruminococcus gnavus 的唯一碳源。已经探索了将疏水性紫外活性标签引入乳糖作为合适的唾液酸转移酶受体的不同方法,并确定了一种简单的两步高产化学合成程序。紫外活性疏水性标签有助于监测反应进程,并允许通过 C18 筒轻松进行产物纯化。已经建立了两步酶催化反应程序,与基于 C18 筒的纯化过程相结合,以在多克规模上以高产率生产所需产物,并可回收利用带有发色团标记的乳糖起始原料和唾液酸苷中间产物。该研究展示了一种环保高效的 2,7-脱水-Neu5Ac 生产的合成和纯化策略,以探索其潜在功能。

相似文献

1
A substrate tagging and two-step enzymatic reaction strategy for large-scale synthesis of 2,7-anhydro-sialic acid.
Carbohydr Res. 2019 Jun 1;479:41-47. doi: 10.1016/j.carres.2019.05.002. Epub 2019 May 16.
2
Enabling Chemoenzymatic Strategies and Enzymes for Synthesizing Sialyl Glycans and Sialyl Glycoconjugates.
Acc Chem Res. 2024 Jan 16;57(2):234-246. doi: 10.1021/acs.accounts.3c00614. Epub 2023 Dec 21.
3
Membrane-enclosed multienzyme (MEME) synthesis of 2,7-anhydro-sialic acid derivatives.
Carbohydr Res. 2017 Nov 8;451:110-117. doi: 10.1016/j.carres.2017.08.008. Epub 2017 Aug 19.
4
5
Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria.
J Biol Chem. 2020 Oct 2;295(40):13724-13736. doi: 10.1074/jbc.RA120.014454. Epub 2020 Jul 15.
8
Synthesis of CMP-9''-modified-sialic acids as donor substrate analogues for mammalian and bacterial sialyltransferases.
Carbohydr Res. 2007 Sep 3;342(12-13):1680-8. doi: 10.1016/j.carres.2007.05.029. Epub 2007 Jun 5.
9
Acceptor-mediated regioselective enzyme catalyzed sialylation: chemoenzymatic synthesis of GAA-7 ganglioside glycan.
Chem Commun (Camb). 2021 Apr 11;57(28):3468-3471. doi: 10.1039/d1cc00653c. Epub 2021 Mar 10.
10
Mass production of bacterial alpha 2,6-sialyltransferase and enzymatic syntheses of sialyloligosaccharides.
Biosci Biotechnol Biochem. 1998 Feb;62(2):210-4. doi: 10.1271/bbb.62.210.

引用本文的文献

本文引用的文献

2
Concise synthesis of 2,7-anhydrosialic acid derivatives and its application.
Carbohydr Res. 2017 Dec 1;453-454:44-53. doi: 10.1016/j.carres.2017.10.007. Epub 2017 Oct 19.
3
Membrane-enclosed multienzyme (MEME) synthesis of 2,7-anhydro-sialic acid derivatives.
Carbohydr Res. 2017 Nov 8;451:110-117. doi: 10.1016/j.carres.2017.08.008. Epub 2017 Aug 19.
5
A Chemical Biology Solution to Problems with Studying Biologically Important but Unstable 9-O-Acetyl Sialic Acids.
ACS Chem Biol. 2017 Jan 20;12(1):214-224. doi: 10.1021/acschembio.6b00928. Epub 2016 Dec 12.
7
The mucin-degradation strategy of Ruminococcus gnavus: The importance of intramolecular trans-sialidases.
Gut Microbes. 2016 Jul 3;7(4):302-312. doi: 10.1080/19490976.2016.1186334. Epub 2016 May 25.
9
Nanomolar inhibitors of the transcription factor STAT5b with high selectivity over STAT5a.
Angew Chem Int Ed Engl. 2015 Apr 13;54(16):4758-63. doi: 10.1002/anie.201410672. Epub 2015 Feb 20.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验