Suppr超能文献

基于增强现实与稳态视觉诱发电位的视觉目标检测系统

[Visual object detection system based on augmented reality and steady-state visual evoked potential].

作者信息

Guo Meng'ao, Yang Banghua, Geng Yiting, Jie Rongxin, Zhang Yonghuai, Zheng Yanyan

机构信息

School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai 200444, P. R. China.

Shanghai Sensing Technology Company, Shanghai 201900, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Aug 25;41(4):684-691. doi: 10.7507/1001-5515.202403041.

Abstract

This study investigates a brain-computer interface (BCI) system based on an augmented reality (AR) environment and steady-state visual evoked potentials (SSVEP). The system is designed to facilitate the selection of real-world objects through visual gaze in real-life scenarios. By integrating object detection technology and AR technology, the system augmented real objects with visual enhancements, providing users with visual stimuli that induced corresponding brain signals. SSVEP technology was then utilized to interpret these brain signals and identify the objects that users focused on. Additionally, an adaptive dynamic time-window-based filter bank canonical correlation analysis was employed to rapidly parse the subjects' brain signals. Experimental results indicated that the system could effectively recognize SSVEP signals, achieving an average accuracy rate of 90.6% in visual target identification. This system extends the application of SSVEP signals to real-life scenarios, demonstrating feasibility and efficacy in assisting individuals with mobility impairments and physical disabilities in object selection tasks.

摘要

本研究调查了一种基于增强现实(AR)环境和稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统。该系统旨在便于在现实生活场景中通过视觉注视来选择现实世界中的物体。通过整合目标检测技术和AR技术,该系统用视觉增强功能增强真实物体,为用户提供诱发相应脑信号的视觉刺激。然后利用SSVEP技术来解读这些脑信号并识别用户所关注的物体。此外,采用了基于自适应动态时间窗的滤波器组典型相关分析来快速解析受试者的脑信号。实验结果表明,该系统能够有效识别SSVEP信号,在视觉目标识别中平均准确率达到90.6%。该系统将SSVEP信号的应用扩展到现实生活场景中,证明了在协助行动不便和身体残疾的个体进行物体选择任务方面的可行性和有效性。

相似文献

2
An SSVEP-BCI in Augmented Reality.增强现实中的稳态视觉诱发电位脑机接口
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5548-5551. doi: 10.1109/EMBC.2019.8857859.

本文引用的文献

1
Adaptive Window Method Based on FBCCA for Optimal SSVEP Recognition.基于FBCCA的自适应窗口方法用于最优稳态视觉诱发电位识别
IEEE Trans Neural Syst Rehabil Eng. 2023;31:78-86. doi: 10.1109/TNSRE.2022.3217789. Epub 2023 Jan 30.
2
Augmented Reality Driven Steady-State Visual Evoked Potentials for Wheelchair Navigation.增强现实驱动的稳态视觉诱发电位用于轮椅导航。
IEEE Trans Neural Syst Rehabil Eng. 2022;30:2960-2969. doi: 10.1109/TNSRE.2022.3215695. Epub 2022 Oct 28.
6
Discriminative Feature Extraction via Multivariate Linear Regression for SSVEP-Based BCI.基于多变量线性回归的 SSVEP 脑-机接口的判别特征提取。
IEEE Trans Neural Syst Rehabil Eng. 2016 May;24(5):532-41. doi: 10.1109/TNSRE.2016.2519350. Epub 2016 Jan 21.
7
High-speed spelling with a noninvasive brain-computer interface.使用非侵入性脑机接口的高速拼写
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):E6058-67. doi: 10.1073/pnas.1508080112. Epub 2015 Oct 19.
10
BCI Meeting 2005--workshop on signals and recording methods.2005年脑机接口会议——信号与记录方法研讨会
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):138-41. doi: 10.1109/TNSRE.2006.875583.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验