1 NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California.
2 Carl Sagan Center, SETI Institute , Mountain View, California.
Astrobiology. 2018 Sep;18(9):1147-1158. doi: 10.1089/ast.2017.1707. Epub 2018 Aug 14.
Gradients generated in hydrothermal systems provide a significant source of free energy for chemosynthetic life and may play a role in present-day habitability on ocean worlds. Electron/proton/ion gradients, particularly in the context of hydrothermal chimney structures, may also be relevant to the origins of life on Earth. Hydrothermal vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and hydrothermal fluid are analogous to the fuel cell oxidant and fuel reservoirs; the porous chimney wall is analogous to a separator or ion-exchange membrane and is also a conductive path for electrons; and the hydrothermal minerals are analogous to electrode catalysts. The modular and scalable characteristics of fuel cell systems make for a convenient planetary geology test bed in which geologically relevant components may be assembled and investigated in a controlled simulation environment. We have performed fuel cell experiments and electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. In a fuel cell with Na-conducting Nafion membranes and liquid fuel/oxidant reservoirs (simulating the vent environment), the black smoker mineral catalyst in the membrane electrode assembly was effective in reducing O and oxidizing sulfide. In a H/O polymer electrolyte membrane (PEM) fuel cell with H-conducting Nafion membranes, the black smoker catalyst was effective in reducing O but not in oxidizing H. These fuel cell experiments accurately simulated the redox reactions that could occur in a geological setting with this particular catalyst, and also tested whether the minerals are sufficiently active to replace a commercial fuel cell catalyst. Similar experiments with other geocatalysts could be utilized to test which redox reactions could be driven in other hydrothermal systems, including hypothesized vent systems on other worlds.
水热系统中产生的梯度为化学生命提供了重要的自由能来源,并且可能在现今的海洋世界中发挥着宜居性的作用。电子/质子/离子梯度,特别是在热液烟囱结构的背景下,也可能与地球上生命的起源有关。热液喷口在某些方面与典型的燃料电池装置相似:海水和热液之间的氧化还原/pH 梯度类似于燃料电池的氧化剂和燃料储存库;多孔的烟囱壁类似于分离器或离子交换膜,也是电子的导电路径;而热液矿物类似于电极催化剂。燃料电池系统的模块化和可扩展性特点使其成为一个方便的行星地质试验台,可以在受控的模拟环境中组装和研究与地质相关的组件。我们已经进行了燃料电池实验和电化学研究,以更好地了解海底矿物和喷口烟囱的催化潜力,使用来自黑烟囱喷口烟囱的样本进行了初步演示。在使用 Na 导电 Nafion 膜和液体燃料/氧化剂储存库(模拟喷口环境)的燃料电池中,膜电极组件中的黑烟囱矿物催化剂有效地还原了 O 并氧化了硫化物。在具有 H 导电 Nafion 膜的 H/O 聚合物电解质膜(PEM)燃料电池中,黑烟囱催化剂有效地还原了 O,但不能氧化 H。这些燃料电池实验准确地模拟了在具有这种特定催化剂的地质环境中可能发生的氧化还原反应,并且还测试了这些矿物是否足够活跃,可以替代商业燃料电池催化剂。可以利用其他地质催化剂的类似实验来测试在其他热液系统中可以驱动哪些氧化还原反应,包括在其他世界上假设的喷口系统。