IEEE Trans Pattern Anal Mach Intell. 2019 Nov;41(11):2553-2567. doi: 10.1109/TPAMI.2018.2865351. Epub 2018 Aug 13.
We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine, homography or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging PF, TSS and Caltech-101 datasets.
我们解决了根据仿射、单应性或薄板样条变换等几何模型确定两幅图像之间对应关系并估计其参数的问题。这项工作的贡献有三点。首先,我们提出了一种用于几何匹配的卷积神经网络架构。该架构基于三个主要组件,这些组件模拟特征提取、匹配以及同时内点检测和模型参数估计的标准步骤,同时可以端到端进行训练。其次,我们证明可以从合成生成的图像中训练网络参数,而无需手动注释,并且我们的匹配层大大提高了对以前未见图像的泛化能力。最后,我们表明,同一个模型可以进行实例级和类别级匹配,在具有挑战性的 PF、TSS 和 Caltech-101 数据集上取得了最先进的结果。