Ruchti Alexander, Neuwirth Alexander, Lowman Allison K, Duenweg Savannah R, LaViolette Peter S, Bukowy John D
Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, WI, United States.
Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States.
PeerJ Comput Sci. 2022 Dec 1;8:e1155. doi: 10.7717/peerj-cs.1155. eCollection 2022.
Registration is the process of transforming images so they are aligned in the same coordinate space. In the medical field, image registration is often used to align multi-modal or multi-parametric images of the same organ. A uniquely challenging subset of medical image registration is cross-modality registration-the task of aligning images captured with different scanning methodologies. In this study, we present a transformer-based deep learning pipeline for performing cross-modality, radiology-pathology image registration for human prostate samples. While existing solutions for multi-modality prostate image registration focus on the prediction of transform parameters, our pipeline predicts a set of homologous points on the two image modalities. The homologous point registration pipeline achieves better average control point deviation than the current state-of-the-art automatic registration pipeline. It reaches this accuracy without requiring masked MR images which may enable this approach to achieve similar results in other organ systems and for partial tissue samples.
配准是将图像进行变换,使其在同一坐标空间中对齐的过程。在医学领域,图像配准常用于对同一器官的多模态或多参数图像进行对齐。医学图像配准中一个极具挑战性的子集是跨模态配准,即对齐通过不同扫描方法获取的图像的任务。在本研究中,我们提出了一种基于Transformer的深度学习管道,用于对人类前列腺样本进行跨模态的放射学 - 病理学图像配准。虽然现有的多模态前列腺图像配准解决方案侧重于变换参数的预测,但我们的管道预测了两种图像模态上的一组对应点。与当前最先进的自动配准管道相比,对应点配准管道实现了更好的平均控制点偏差。它在不需要掩码磁共振图像的情况下达到了这种精度,这可能使该方法在其他器官系统和部分组织样本中取得类似的结果。