Suppr超能文献

海马网络对位置和上下文信息的整合和多路复用。

Integration and multiplexing of positional and contextual information by the hippocampal network.

机构信息

Laboratory of Statistical Physics, Ecole Normale Supérieure and CNRS UMR 8550, PSL Research, Paris Sorbonne UPMC, 24 rue Lhomond, 75005 Paris, France.

Laboratory of Theoretical Physics, Ecole Normale Supérieure and CNRS UMR 8549, PSL Research, Paris Sorbonne UPMC, 24 rue Lhomond, 75005 Paris, France.

出版信息

PLoS Comput Biol. 2018 Aug 14;14(8):e1006320. doi: 10.1371/journal.pcbi.1006320. eCollection 2018 Aug.

Abstract

The hippocampus is known to store cognitive representations, or maps, that encode both positional and contextual information, critical for episodic memories and functional behavior. How path integration and contextual cues are dynamically combined and processed by the hippocampus to maintain these representations accurate over time remains unclear. To answer this question, we propose a two-way data analysis and modeling approach to CA3 multi-electrode recordings of a moving rat submitted to rapid changes of contextual (light) cues, triggering back-and-forth instabitilies between two cognitive representations ("teleportation" experiment of Jezek et al). We develop a dual neural activity decoder, capable of independently identifying the recalled cognitive map at high temporal resolution (comparable to theta cycle) and the position of the rodent given a map. Remarkably, position can be reconstructed at any time with an accuracy comparable to fixed-context periods, even during highly unstable periods. These findings provide evidence for the capability of the hippocampal neural activity to maintain an accurate encoding of spatial and contextual variables, while one of these variables undergoes rapid changes independently of the other. To explain this result we introduce an attractor neural network model for the hippocampal activity that process inputs from external cues and the path integrator. Our model allows us to make predictions on the frequency of the cognitive map instability, its duration, and the detailed nature of the place-cell population activity, which are validated by a further analysis of the data. Our work therefore sheds light on the mechanisms by which the hippocampal network achieves and updates multi-dimensional neural representations from various input streams.

摘要

海马体被认为存储着认知表示或地图,这些表示或地图编码了位置和上下文信息,对于情景记忆和功能行为至关重要。海马体如何动态地组合和处理路径整合和上下文线索,以保持这些表示随着时间的推移的准确性,目前仍不清楚。为了回答这个问题,我们提出了一种双向数据分析和建模方法,用于对经历快速变化的上下文(光)线索的移动大鼠的 CA3 多电极记录进行分析,这些线索会触发两种认知表示之间的来回不稳定性(Jezek 等人的“瞬移”实验)。我们开发了一种双神经活动解码器,能够以高时间分辨率(与 theta 周期相当)独立识别回忆中的认知图,并根据地图识别啮齿动物的位置。值得注意的是,即使在高度不稳定的时期,位置也可以以与固定上下文时期相当的精度在任何时间进行重建。这些发现为海马体神经活动能够保持空间和上下文变量的准确编码提供了证据,而这些变量中的一个变量可以独立于另一个变量快速变化。为了解释这一结果,我们引入了一个用于海马体活动的吸引子神经网络模型,该模型处理来自外部线索和路径积分器的输入。我们的模型允许我们对认知图不稳定性的频率、持续时间以及位置细胞群体活动的详细性质进行预测,并通过对数据的进一步分析进行验证。因此,我们的工作揭示了海马体网络如何从各种输入流中实现和更新多维神经表示的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f419/6117099/f226b96b958d/pcbi.1006320.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验