Savelli Francesco, Luck J D, Knierim James J
Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, United States.
Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States.
Elife. 2017 Jan 13;6:e21354. doi: 10.7554/eLife.21354.
Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain's cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes.
网格细胞是研究大脑认知地图的以自我为中心的决定因素的理想候选对象。大多数关于网格细胞的研究都强调了动物导航范围内几何边界的作用。诸如在局部环境之间采取新路线等行为表明,除了导航边界之外,还存在来自远处线索的额外输入。为了研究这些影响,我们在大鼠探索一个带有显著远处线索的房间中的开放场地平台时记录了网格细胞。平台相对于房间参考系进行旋转或平移。尽管局部几何参考系通常对网格施加最强的控制,但远处线索显示出一致的、有时占主导地位的抵消影响。因此,网格细胞受局部几何边界和远处空间线索的共同控制,这与先前对海马位置细胞的研究一致,并为支持复杂的导航(也许还有记忆)过程提供了丰富的表征库。