Suppr超能文献

VX-770 通过稳定前水解、O 态增强囊性纤维化跨膜电导调节因子。

Potentiation of the cystic fibrosis transmembrane conductance regulator by VX-770 involves stabilization of the pre-hydrolytic, O state.

机构信息

Neuroscience, Physiology and Pharmacology, University College London, London, UK.

出版信息

Br J Pharmacol. 2018 Oct;175(20):3990-4002. doi: 10.1111/bph.14475. Epub 2018 Sep 16.

Abstract

BACKGROUND AND PURPOSE

Cystic fibrosis (CF) is a debilitating hereditary disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes an anion channel. Wild type-CFTR gating is a non-equilibrium process. After ATP binding, CFTR enters a stable open state (O ). ATP hydrolysis leads it to a short-lived post-hydrolytic open state (O ), from which channels close. Here, we use mutations to probe the mechanism of VX-770, the first compound directly targeting the CFTR protein approved for treatment of CF. D1370N and K1250R mutations reduce or abolish catalytic activity, simplifying the gating scheme to an equilibrium (C↔O ); K464A-CFTR has a destabilized O state and rarely closes via hydrolysis.

EXPERIMENTAL APPROACH

Potentiation by VX-770 was measured using microscopic imaging of HEK293 cells expressing an anion-sensitive YFP-CFTR. A simple mathematical model was used to predict fluorescence quenching following extracellular iodide addition and estimate CFTR conductance. Membrane density of CFTR channels was measured in a parallel assay, using CFTR-pHTomato.

KEY RESULTS

VX-770 strongly potentiated WT-CFTR, D1370N-CFTR and K1250R-CFTR. K464A-CFTR was also strongly potentiated, regardless of whether it retained catalytic activity or not.

CONCLUSIONS AND IMPLICATIONS

Similar potentiation of hydrolytic and non-hydrolytic mutants suggests that VX-770 increases CFTR open probability mainly by stabilizing pre-hydrolytic O states with respect to closed states. Potentiation of K464A-CFTR channels suggests action of VX-770 did not strongly alter conformational dynamics at site 1. Understanding potentiator mechanism could help develop improved treatment for CF patients. The fluorescence assay presented here is a robust tool for such investigations.

摘要

背景与目的

囊性纤维化(CF)是一种由囊性纤维化跨膜电导调节因子(CFTR)基因突变引起的衰弱性遗传性疾病,该基因编码一种阴离子通道。野生型 CFTR 的门控是一个非平衡过程。在 ATP 结合后,CFTR 进入稳定的开放状态(O)。ATP 水解导致其短暂进入后水解开放状态(O),随后通道关闭。在这里,我们使用突变来探测 VX-770 的作用机制,这是第一种直接针对 CFTR 蛋白的化合物,被批准用于 CF 的治疗。D1370N 和 K1250R 突变降低或消除了催化活性,简化了门控方案为平衡(C↔O);K464A-CFTR 具有不稳定的 O 态,很少通过水解关闭。

实验方法

使用表达阴离子敏感 YFP-CFTR 的 HEK293 细胞的微观成像测量 VX-770 的增强作用。使用简单的数学模型预测细胞外碘化物添加后的荧光猝灭,并估计 CFTR 电导。使用 CFTR-pHTomato 在平行测定中测量 CFTR 通道的膜密度。

主要结果

VX-770 强烈增强 WT-CFTR、D1370N-CFTR 和 K1250R-CFTR。无论是否保留催化活性,K464A-CFTR 也被强烈增强。

结论与意义

对水解和非水解突变体的相似增强表明,VX-770 主要通过稳定相对于关闭状态的预水解 O 态来增加 CFTR 的开放概率。K464A-CFTR 通道的增强表明,VX-770 的作用并未强烈改变 1 号位点的构象动力学。了解增敏剂的作用机制可能有助于为 CF 患者开发更有效的治疗方法。本文提出的荧光测定法是此类研究的有力工具。

相似文献

2
On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
J Physiol. 2016 Jun 15;594(12):3227-44. doi: 10.1113/JP271723. Epub 2016 Mar 23.
5
Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle.
Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4404-9. doi: 10.1073/pnas.1215982110. Epub 2013 Feb 25.
6
A common mechanism for CFTR potentiators.
J Gen Physiol. 2017 Dec 4;149(12):1105-1118. doi: 10.1085/jgp.201711886. Epub 2017 Oct 27.
7
Fluorescence assay for simultaneous quantification of CFTR ion-channel function and plasma membrane proximity.
J Biol Chem. 2020 Dec 4;295(49):16529-16544. doi: 10.1074/jbc.RA120.014061. Epub 2020 Sep 15.
8
Mutation-specific dual potentiators maximize rescue of CFTR gating mutants.
J Cyst Fibros. 2020 Mar;19(2):236-244. doi: 10.1016/j.jcf.2019.10.011. Epub 2019 Oct 31.
9
Differential thermostability and response to cystic fibrosis transmembrane conductance regulator potentiators of human and mouse F508del-CFTR.
Am J Physiol Lung Cell Mol Physiol. 2019 Jul 1;317(1):L71-L86. doi: 10.1152/ajplung.00034.2019. Epub 2019 Apr 10.
10
Physiological and pharmacological characterization of the N1303K mutant CFTR.
J Cyst Fibros. 2018 Sep;17(5):573-581. doi: 10.1016/j.jcf.2018.05.011. Epub 2018 Jun 7.

引用本文的文献

1
Progress of personalized medicine of cystic fibrosis in the times of efficient CFTR modulators.
Mol Cell Pediatr. 2025 May 5;12(1):6. doi: 10.1186/s40348-025-00194-0.
2
VX-770, C-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity.
Int J Mol Sci. 2025 Jan 8;26(2):471. doi: 10.3390/ijms26020471.
4
Two rare variants that affect the same amino acid in CFTR have distinct responses to ivacaftor.
J Physiol. 2024 Jan;602(2):333-354. doi: 10.1113/JP285727. Epub 2024 Jan 7.
5
Expression of gain-of-function CFTR in cystic fibrosis airway cells restores epithelial function better than wild-type or codon-optimized CFTR.
Mol Ther Methods Clin Dev. 2023 Aug 12;30:593-605. doi: 10.1016/j.omtm.2023.08.006. eCollection 2023 Sep 14.
6
Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor.
Front Pharmacol. 2023 Mar 21;14:1158207. doi: 10.3389/fphar.2023.1158207. eCollection 2023.
7
Validating organoid-derived human intestinal monolayers for personalized therapy in cystic fibrosis.
Life Sci Alliance. 2023 Apr 5;6(6). doi: 10.26508/lsa.202201857. Print 2023 Jun.
8
CFTR function, pathology and pharmacology at single-molecule resolution.
Nature. 2023 Apr;616(7957):606-614. doi: 10.1038/s41586-023-05854-7. Epub 2023 Mar 22.
9
Bicarbonate Transport in Cystic Fibrosis and Pancreatitis.
Cells. 2021 Dec 24;11(1):54. doi: 10.3390/cells11010054.
10
The molecular evolution of function in the CFTR chloride channel.
J Gen Physiol. 2021 Dec 6;153(12). doi: 10.1085/jgp.202012625. Epub 2021 Oct 14.

本文引用的文献

1
Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor.
Thorax. 2018 Aug;73(8):731-740. doi: 10.1136/thoraxjnl-2017-210394. Epub 2018 May 10.
4
THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Transporters.
Br J Pharmacol. 2017 Dec;174 Suppl 1(Suppl Suppl 1):S360-S446. doi: 10.1111/bph.13883.
5
THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Enzymes.
Br J Pharmacol. 2017 Dec;174 Suppl 1(Suppl Suppl 1):S272-S359. doi: 10.1111/bph.13877.
6
Conformational Changes of CFTR upon Phosphorylation and ATP Binding.
Cell. 2017 Jul 27;170(3):483-491.e8. doi: 10.1016/j.cell.2017.06.041. Epub 2017 Jul 20.
7
Molecular Structure of the Human CFTR Ion Channel.
Cell. 2017 Mar 23;169(1):85-95.e8. doi: 10.1016/j.cell.2017.02.024.
9
Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator.
Cell. 2016 Dec 1;167(6):1586-1597.e9. doi: 10.1016/j.cell.2016.11.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验