Suppr超能文献

以单分子分辨率研究 CFTR 的功能、病理学和药理学。

CFTR function, pathology and pharmacology at single-molecule resolution.

机构信息

Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA.

Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.

出版信息

Nature. 2023 Apr;616(7957):606-614. doi: 10.1038/s41586-023-05854-7. Epub 2023 Mar 22.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates salt and fluid homeostasis across epithelial membranes. Alterations in CFTR cause cystic fibrosis, a fatal disease without a cure. Electrophysiological properties of CFTR have been analysed for decades. The structure of CFTR, determined in two globally distinct conformations, underscores its evolutionary relationship with other ATP-binding cassette transporters. However, direct correlations between the essential functions of CFTR and extant structures are lacking at present. Here we combine ensemble functional measurements, single-molecule fluorescence resonance energy transfer, electrophysiology and kinetic simulations to show that the two nucleotide-binding domains (NBDs) of human CFTR dimerize before channel opening. CFTR exhibits an allosteric gating mechanism in which conformational changes within the NBD-dimerized channel, governed by ATP hydrolysis, regulate chloride conductance. The potentiators ivacaftor and GLPG1837 enhance channel activity by increasing pore opening while NBDs are dimerized. Disease-causing substitutions proximal (G551D) or distal (L927P) to the ATPase site both reduce the efficiency of NBD dimerization. These findings collectively enable the framing of a gating mechanism that informs on the search for more efficacious clinical therapies.

摘要

囊性纤维化跨膜电导调节因子(CFTR)是一种阴离子通道,可调节上皮细胞膜两侧的盐和液体平衡。CFTR 的改变会导致致命的囊性纤维化,目前尚无治愈方法。几十年来,人们一直在分析 CFTR 的电生理特性。CFTR 的结构已在两种全球不同的构象中确定,这突出了它与其他 ATP 结合盒转运蛋白的进化关系。然而,目前尚缺乏 CFTR 的基本功能与现有结构之间的直接相关性。在这里,我们结合了功能测定、单分子荧光共振能量转移、电生理学和动力学模拟,以证明人类 CFTR 二聚体在通道打开之前,两个核苷酸结合结构域(NBD)就会发生二聚化。CFTR 表现出一种变构门控机制,其中 NBD-二聚化通道内的构象变化受 ATP 水解的调控,调节氯离子电导。调节剂 ivacaftor 和 GLPG1837 通过增加孔的开放来增强通道活性,而 NBD 则发生二聚化。靠近(G551D)或远离(L927P)ATP 酶位点的致病突变都会降低 NBD 二聚化的效率。这些发现共同为门控机制提供了一个框架,为寻找更有效的临床治疗方法提供了信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3695/10115640/eaef51a9941d/41586_2023_5854_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验