Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY, USA.
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Nature. 2023 Apr;616(7957):606-614. doi: 10.1038/s41586-023-05854-7. Epub 2023 Mar 22.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates salt and fluid homeostasis across epithelial membranes. Alterations in CFTR cause cystic fibrosis, a fatal disease without a cure. Electrophysiological properties of CFTR have been analysed for decades. The structure of CFTR, determined in two globally distinct conformations, underscores its evolutionary relationship with other ATP-binding cassette transporters. However, direct correlations between the essential functions of CFTR and extant structures are lacking at present. Here we combine ensemble functional measurements, single-molecule fluorescence resonance energy transfer, electrophysiology and kinetic simulations to show that the two nucleotide-binding domains (NBDs) of human CFTR dimerize before channel opening. CFTR exhibits an allosteric gating mechanism in which conformational changes within the NBD-dimerized channel, governed by ATP hydrolysis, regulate chloride conductance. The potentiators ivacaftor and GLPG1837 enhance channel activity by increasing pore opening while NBDs are dimerized. Disease-causing substitutions proximal (G551D) or distal (L927P) to the ATPase site both reduce the efficiency of NBD dimerization. These findings collectively enable the framing of a gating mechanism that informs on the search for more efficacious clinical therapies.
囊性纤维化跨膜电导调节因子(CFTR)是一种阴离子通道,可调节上皮细胞膜两侧的盐和液体平衡。CFTR 的改变会导致致命的囊性纤维化,目前尚无治愈方法。几十年来,人们一直在分析 CFTR 的电生理特性。CFTR 的结构已在两种全球不同的构象中确定,这突出了它与其他 ATP 结合盒转运蛋白的进化关系。然而,目前尚缺乏 CFTR 的基本功能与现有结构之间的直接相关性。在这里,我们结合了功能测定、单分子荧光共振能量转移、电生理学和动力学模拟,以证明人类 CFTR 二聚体在通道打开之前,两个核苷酸结合结构域(NBD)就会发生二聚化。CFTR 表现出一种变构门控机制,其中 NBD-二聚化通道内的构象变化受 ATP 水解的调控,调节氯离子电导。调节剂 ivacaftor 和 GLPG1837 通过增加孔的开放来增强通道活性,而 NBD 则发生二聚化。靠近(G551D)或远离(L927P)ATP 酶位点的致病突变都会降低 NBD 二聚化的效率。这些发现共同为门控机制提供了一个框架,为寻找更有效的临床治疗方法提供了信息。