Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
Cytometry A. 2018 Aug;93(8):785-792. doi: 10.1002/cyto.a.23566. Epub 2018 Aug 14.
Multidimensional single-cell analysis requires approaches to visualize complex data in intuitive 2D graphs. In this regard, t-distributed stochastic neighboring embedding (tSNE) is the most popular algorithm for single-cell RNA sequencing and cytometry by time-of-flight (CyTOF), but its application to polychromatic flow cytometry, including the recently developed 30-parameter platform, is still under investigation. We identified differential distribution of background values between samples, generated by either background calculation or spreading error (SE), as a major source of variability in polychromatic flow cytometry data representation by tSNE, ultimately resulting in the identification of erroneous heterogeneity among cell populations. Biexponential transformation of raw data and limiting SE during panel development dramatically improved data visualization. These aspects must be taken into consideration when using computational approaches as discovery tools in large sets of samples from independent experiments or immunomonitoring in clinical trials.
多维单细胞分析需要能够直观地将复杂数据可视化在 2D 图中的方法。在这方面,t 分布随机邻域嵌入(tSNE)是单细胞 RNA 测序和飞行时间(CyTOF)的最受欢迎的算法,但它在多色流式细胞术,包括最近开发的 30 参数平台中的应用仍在研究中。我们发现,由背景计算或散布误差(SE)生成的样本之间的背景值的差异分布是 tSNE 表示多色流式细胞术数据的可变性的主要来源,最终导致在细胞群体中鉴定出错误的异质性。原始数据的双指数转换和在面板开发过程中限制 SE 极大地改善了数据可视化。在使用计算方法作为来自独立实验或临床试验中的免疫监测的大型样本集的发现工具时,必须考虑这些方面。