Hauwiller Matthew R, Frechette Layne B, Jones Matthew R, Ondry Justin C, Rotskoff Grant M, Geissler Phillip, Alivisatos A Paul
Department of Chemistry , University of California-Berkeley , Berkeley , California , 94720 , United States.
Erwin Schrödinger Institute for Mathematics and Physics , University of Vienna , 1090 Vienna , Austria.
Nano Lett. 2018 Sep 12;18(9):5731-5737. doi: 10.1021/acs.nanolett.8b02337. Epub 2018 Aug 20.
Mechanisms of kinetically driven nanocrystal shape transformations were elucidated by monitoring single particle etching of gold nanocrystals using in situ graphene liquid cell transmission electron microscopy (TEM). By systematically changing the chemical potential of the oxidative etching and then quantifying the facets of the nanocrystals, nonequilibrium processes of atom removal could be deduced. Etching at sufficiently high oxidation potentials, both cube and rhombic dodecahedra (RDD)-shaped gold nanocrystals transform into kinetically stable tetrahexahedra (THH)-shaped particles. Whereas {100}-faceted cubes adopt an { hk0}-faceted THH intermediate where h/ k depends on chemical potential, {110}-faceted RDD adopt a {210}-faceted THH intermediate regardless of driving force. For cube reactions, Monte Carlo simulations show that removing 6-coordinate edge atoms immediately reveals 7-coordinate interior atoms. The rate at which these 6- and 7-coordinate atoms are etched is sensitive to the chemical potential, resulting in different THH facet structures with varying driving force. Conversely, when RDD are etched to THH, removal of 6-coordinate edge atoms reveals 6-coordinate interior atoms. Thus, changing the driving force for oxidation does not change the probability of edge atom versus interior atom removal, leading to a negligible effect on the kinetically stabilized intermediate shape. These fundamental insights, facilitated by single-particle liquid-phase TEM imaging, provide important atomic-scale mechanistic details regarding the role of kinetics and chemical driving force in dictating shape transformations at the nanometer length scale.
通过使用原位石墨烯液体池透射电子显微镜(TEM)监测金纳米晶体的单颗粒蚀刻,阐明了动力学驱动的纳米晶体形状转变机制。通过系统地改变氧化蚀刻的化学势,然后对纳米晶体的晶面进行量化,可以推断出原子去除的非平衡过程。在足够高的氧化电位下进行蚀刻时,立方体和菱形十二面体(RDD)形状的金纳米晶体都会转变为动力学稳定的四六面体(THH)形状的颗粒。具有{100}面的立方体采用{hk0}面的THH中间体,其中h/k取决于化学势,而具有{110}面的RDD无论驱动力如何都采用{210}面的THH中间体。对于立方体反应,蒙特卡罗模拟表明,去除六配位边缘原子会立即暴露出七配位内部原子。这些六配位和七配位原子的蚀刻速率对化学势敏感,导致在不同驱动力下形成不同的THH晶面结构。相反,当RDD蚀刻成THH时,去除六配位边缘原子会暴露出六配位内部原子。因此,改变氧化驱动力不会改变边缘原子与内部原子去除的概率,对动力学稳定的中间形状影响可忽略不计。单颗粒液相TEM成像有助于获得这些基本见解,提供了关于动力学和化学驱动力在纳米尺度上决定形状转变中作用的重要原子尺度机制细节。