Suppr超能文献

使用石墨烯液体池透射电子显微镜原位研究纳米晶体蚀刻。

Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching.

作者信息

Hauwiller Matthew R, Ondry Justin C, Alivisatos A Paul

机构信息

Department of Chemistry, University of California-Berkeley.

Department of Chemistry, University of California-Berkeley; Department of Material Science and Engineering, University of California-Berkeley; Kavli Energy NanoScience Institute; Materials Sciences Division, Lawrence Berkeley National Laboratory;

出版信息

J Vis Exp. 2018 May 17(135):57665. doi: 10.3791/57665.

Abstract

Graphene liquid cell electron microscopy provides the ability to observe nanoscale chemical transformations and dynamics as the reactions are occurring in liquid environments. This manuscript describes the process for making graphene liquid cells through the example of graphene liquid cell transmission electron microscopy (TEM) experiments of gold nanocrystal etching. The protocol for making graphene liquid cells involves coating gold, holey-carbon TEM grids with chemical vapor deposition graphene and then using those graphene-coated grids to encapsulate liquid between two graphene surfaces. These pockets of liquid, with the nanomaterial of interest, are imaged in the electron microscope to see the dynamics of the nanoscale process, in this case the oxidative etching of gold nanorods. By controlling the electron beam dose rate, which modulates the etching species in the liquid cell, the underlying mechanisms of how atoms are removed from nanocrystals to form different facets and shapes can be better understood. Graphene liquid cell TEM has the advantages of high spatial resolution, compatibility with traditional TEM holders, and low start-up costs for research groups. Current limitations include delicate sample preparation, lack of flow capability, and reliance on electron beam-generated radiolysis products to induce reactions. With further development and control, graphene liquid cell may become a ubiquitous technique in nanomaterials and biology, and is already being used to study mechanisms governing growth, etching, and self-assembly processes of nanomaterials in liquid on the single particle level.

摘要

石墨烯液体池电子显微镜能够在反应于液体环境中发生时观察纳米级化学转变和动力学过程。本手稿通过金纳米晶体蚀刻的石墨烯液体池透射电子显微镜(TEM)实验示例描述了制备石墨烯液体池的过程。制备石墨烯液体池的方案包括用化学气相沉积石墨烯涂覆带有孔洞的碳质金TEM网格,然后使用这些涂覆有石墨烯的网格在两个石墨烯表面之间封装液体。这些含有感兴趣纳米材料的液体腔室在电子显微镜中成像,以观察纳米级过程的动力学,在这种情况下是金纳米棒的氧化蚀刻。通过控制电子束剂量率(其可调节液体池中的蚀刻物质),可以更好地理解原子如何从纳米晶体中去除以形成不同晶面和形状的潜在机制。石墨烯液体池TEM具有高空间分辨率、与传统TEM样品架兼容性好以及研究团队启动成本低等优点。当前的局限性包括样品制备精细、缺乏流动能力以及依赖电子束产生的辐射分解产物来引发反应。随着进一步的发展和控制,石墨烯液体池可能会成为纳米材料和生物学领域中一种普遍使用的技术,并且已经被用于在单粒子水平上研究液体中纳米材料的生长、蚀刻和自组装过程的控制机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce0d/6101270/bb513065c4e1/jove-135-57665-0.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验