Suppr超能文献

一种用于可视化气相制备的金属合金纳米颗粒的生长动力学、结构和行为的新方法。

A novel method for visualization of the growth kinetics, structures and behaviours of gas-phase fabricated metallic alloy nanoparticles.

作者信息

Zhang Lei, He Long-Bing, Shi Lei, Yang Yu-Feng, Shang Guan-Lei, Hong Hua, Sun Li-Tao

机构信息

SEU-FEI Nano-Pico Centre, Key Lab of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China

Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University Suzhou 215123 P. R. China.

出版信息

RSC Adv. 2020 Mar 31;10(22):13037-13042. doi: 10.1039/d0ra01740j. eCollection 2020 Mar 30.

Abstract

Modulation of gas-phase nanoparticles is unmethodical as there is a lack of information on the growth kinetics and its determinants. Here, we developed a novel evaporation-and-deposition (EAD) method inside a transmission electron microscope which enables direct visualization of the nucleation, growth, coalescence and shape/phase evolution of gas-phase fabricated nanoparticles. Using a BiPbSnIn alloy as a sample, the critical factors that determine the feasibility of this EAD method are revealed. By direct observation, it is unambiguously evidenced that pristine nanoparticles with ultra-clean surfaces are extremely energetic during growth. Coalescence between EAD-fabricated nanoparticles takes place in a manner beyond conventional understanding acquired by postmortem analyses. Moreover, the EAD-fabricated diverse nanoparticles show distinct size distributions and sandwich-type or Janus-type phase segregations. These features offer an effective tool to identify atomic surface steps of thin films and can provide an ideal case for exploring the phase diagrams of nanoalloys in the future.

摘要

由于缺乏关于生长动力学及其决定因素的信息,气相纳米颗粒的调制是无规律的。在这里,我们在透射电子显微镜内开发了一种新颖的蒸发沉积(EAD)方法,该方法能够直接观察气相制备的纳米颗粒的成核、生长、聚结以及形状/相演变。以BiPbSnIn合金为样品,揭示了决定这种EAD方法可行性的关键因素。通过直接观察,明确证明具有超清洁表面的原始纳米颗粒在生长过程中具有极高的能量。EAD制备的纳米颗粒之间的聚结方式超出了通过事后分析获得的传统认识。此外,EAD制备的各种纳米颗粒表现出不同的尺寸分布以及三明治型或Janus型相分离。这些特征提供了一种识别薄膜原子表面台阶的有效工具,并可为未来探索纳米合金的相图提供理想案例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f19/9051413/4cf39e27f6a3/d0ra01740j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验