Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Sci Adv. 2024 Apr 19;10(16):eadk0217. doi: 10.1126/sciadv.adk0217. Epub 2024 Apr 17.
Biological phenomena, from enzymatic catalysis to synaptic transmission, originate in the structural transformations of biomolecules and biomolecular assemblies in liquid water. However, directly imaging these nanoscopic dynamics without probes or labels has been a fundamental methodological challenge. Here, we developed an approach for "electron videography"-combining liquid phase electron microscopy with molecular modeling-with which we filmed the nanoscale structural fluctuations of individual, suspended, and unlabeled membrane protein nanodiscs in liquid. Systematic comparisons with biochemical data and simulation indicate the graphene encapsulation involved can afford sufficiently reduced effects of the illuminating electron beam for these observations to yield quantitative fingerprints of nanoscale lipid-protein interactions. Our results suggest that lipid-protein interactions delineate dynamically modified membrane domains across unexpectedly long ranges. Moreover, they contribute to the molecular mechanics of the nanodisc as a whole in a manner specific to the protein within. Overall, this work illustrates an experimental approach to film, quantify, and understand biomolecular dynamics at the nanometer scale.
生物现象,从酶催化到突触传递,都源于生物分子和生物分子组装在液态水中的结构转变。然而,在不使用探针或标记的情况下直接观察这些纳米级动力学一直是一个基本的方法学挑战。在这里,我们开发了一种“电子录像”的方法——将液相电子显微镜与分子建模相结合——我们用这种方法拍摄了悬浮在液体中的单个、未标记的膜蛋白纳米盘的纳米级结构波动。与生化数据和模拟的系统比较表明,所涉及的石墨烯封装可以提供足够小的电子束照射效应,使得这些观察结果能够产生纳米级脂质-蛋白质相互作用的定量特征。我们的结果表明,脂质-蛋白质相互作用在出乎意料的长距离内描绘了动态修饰的膜域。此外,它们以特定于蛋白质的方式为整个纳米盘的分子力学做出贡献。总的来说,这项工作说明了一种在纳米尺度上拍摄、量化和理解生物分子动力学的实验方法。