Suppr超能文献

建议:直接穷尽的具有侧链柔性的蛋白质-蛋白质对接。

ProPOSE: Direct Exhaustive Protein-Protein Docking with Side Chain Flexibility.

机构信息

Human Health Therapeutics , National Research Council Canada , 6100 Royalmount Avenue , Montreal , Quebec H4P 2R2 , Canada.

出版信息

J Chem Theory Comput. 2018 Sep 11;14(9):4938-4947. doi: 10.1021/acs.jctc.8b00225. Epub 2018 Aug 28.

Abstract

Despite decades of development, protein-protein docking remains a largely unsolved problem. The main difficulties are the immense space spanned by the translational and rotational degrees of freedom and the prediction of the conformational changes of proteins upon binding. FFT is generally the preferred method to exhaustively explore the translation-rotation space at a fine grid resolution, albeit with the trade-off of approximating force fields with correlation functions. This work presents a direct search alternative that samples the states in Cartesian space at the same resolution and computational cost as standard FFT methods. Operating in real space allows the use of standard force field functional forms used in typical non-FFT methods as well as the implementation of strategies for focused exploration of conformational flexibility. Currently, a few misplaced side chains can cause docking programs to fail. This work specifically addresses the problem of side chain rearrangements upon complex formation. Based on the observation that most side chains retain their unbound conformation upon binding, each rigidly docked pose is initially scored ignoring up to a limited number of side chain overlaps which are resolved in subsequent repacking and minimization steps. On test systems where side chains are altered and backbones held in their bound state, this implementation provides significantly better native pose recovery and higher quality (lower RMSD) predictions when compared with five of the most popular docking programs. The method is implemented in the software program ProPOSE (Protein Pose Optimization by Systematic Enumeration).

摘要

尽管已经发展了几十年,但蛋白质-蛋白质对接仍然是一个尚未完全解决的问题。主要的困难是翻译和旋转自由度所涵盖的巨大空间,以及结合时蛋白质构象变化的预测。尽管需要用相关函数来近似力场,但快速傅里叶变换(FFT)通常是在精细网格分辨率下详尽探索翻译-旋转空间的首选方法。本工作提出了一种直接搜索替代方案,以相同的分辨率和计算成本在笛卡尔空间中采样状态,与标准 FFT 方法相同。在实空间中操作允许使用标准力场函数形式,这些形式用于典型的非 FFT 方法,以及实施集中探索构象灵活性的策略。目前,少数错位的侧链可能导致对接程序失败。本工作专门解决了复杂形成时侧链重排的问题。基于大多数侧链在结合时保留其非结合构象的观察,每个刚性对接构象最初都不考虑多达有限数量的侧链重叠进行评分,这些重叠将在随后的重新包装和最小化步骤中解决。在侧链发生改变且骨架保持在结合状态的测试系统中,与五个最流行的对接程序相比,这种实现方法在恢复天然构象和提高质量(降低 RMSD)预测方面提供了显著更好的结果。该方法已在软件程序 ProPOSE(通过系统枚举进行蛋白质构象优化)中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验