Suppr超能文献

基于图谱的乳腺癌患者心脏结构自动分割的几何和剂量学评估。

Geometric and dosimetric evaluation of atlas based auto-segmentation of cardiac structures in breast cancer patients.

机构信息

Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States.

Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States.

出版信息

Radiother Oncol. 2019 Feb;131:215-220. doi: 10.1016/j.radonc.2018.07.013. Epub 2018 Aug 11.

Abstract

BACKGROUND AND PURPOSE

Auto-segmentation represents an efficient tool to segment organs on CT imaging. Primarily used in clinical setting, auto-segmentation plays an increasing role in research, particularly when analyzing thousands of images in the "big data" era. In this study we evaluate the accuracy of cardiac dosimetric endpoints derived from atlas based auto-segmentation compared to gold standard manual segmentation.

MATERIAL AND METHODS

Heart and cardiac substructures were manually delineated on 54 breast cancer patients. Twenty-seven patients were used to build the auto-segmentation atlas, the other 27 to validate performance. We evaluated accuracy of the auto-segmented contours with standard geometric indices and assessed dosimetric endpoints.

RESULTS

Auto-segmented contours overlapped geometrically with manual contours of the heart and chambers with Dice-similarity coefficients of 0.93 ± 0.02 (mean ± standard deviation) and 0.79 ± 0.07 respectively. Similarly, there was a strong link between dosimetric parameters derived from auto-segmented and manual contours (R = 0.955-1.000). On the other hand, the left anterior descending artery had little geometric overlap (Dice-similarity coefficient 0.09 ± 0.07), though acceptable representation of dosimetric parameters (R = 0.646-0.992).

CONCLUSIONS

The atlas based auto-segmentation approach delineates heart structures with sufficient accuracy for research purposes. Our results indicate that quality of auto-segmented contours cannot be determined by geometric values only.

摘要

背景与目的

自动分割是一种在 CT 成像上对器官进行分割的有效工具。主要用于临床环境,自动分割在研究中发挥着越来越重要的作用,尤其是在“大数据”时代分析数千张图像时。本研究旨在评估基于图谱的自动分割方法得出的心脏剂量学终点与金标准手动分割的准确性。

材料与方法

手动勾画了 54 例乳腺癌患者的心脏和心脏亚结构。其中 27 例患者用于构建自动分割图谱,其余 27 例患者用于验证性能。我们使用标准几何指标评估自动分割轮廓的准确性,并评估剂量学终点。

结果

自动分割轮廓与心脏和心室的手动轮廓具有良好的几何重叠,Dice 相似性系数分别为 0.93±0.02(平均值±标准差)和 0.79±0.07。同样,自动分割和手动轮廓得出的剂量学参数之间存在很强的相关性(R 值为 0.955-1.000)。另一方面,左前降支的几何重叠很小(Dice 相似性系数为 0.09±0.07),但剂量学参数的表示仍可接受(R 值为 0.646-0.992)。

结论

基于图谱的自动分割方法可以准确地勾画心脏结构,适用于研究目的。我们的研究结果表明,自动分割轮廓的质量不能仅通过几何值来确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验