Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States.
Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States.
Radiother Oncol. 2019 Feb;131:215-220. doi: 10.1016/j.radonc.2018.07.013. Epub 2018 Aug 11.
Auto-segmentation represents an efficient tool to segment organs on CT imaging. Primarily used in clinical setting, auto-segmentation plays an increasing role in research, particularly when analyzing thousands of images in the "big data" era. In this study we evaluate the accuracy of cardiac dosimetric endpoints derived from atlas based auto-segmentation compared to gold standard manual segmentation.
Heart and cardiac substructures were manually delineated on 54 breast cancer patients. Twenty-seven patients were used to build the auto-segmentation atlas, the other 27 to validate performance. We evaluated accuracy of the auto-segmented contours with standard geometric indices and assessed dosimetric endpoints.
Auto-segmented contours overlapped geometrically with manual contours of the heart and chambers with Dice-similarity coefficients of 0.93 ± 0.02 (mean ± standard deviation) and 0.79 ± 0.07 respectively. Similarly, there was a strong link between dosimetric parameters derived from auto-segmented and manual contours (R = 0.955-1.000). On the other hand, the left anterior descending artery had little geometric overlap (Dice-similarity coefficient 0.09 ± 0.07), though acceptable representation of dosimetric parameters (R = 0.646-0.992).
The atlas based auto-segmentation approach delineates heart structures with sufficient accuracy for research purposes. Our results indicate that quality of auto-segmented contours cannot be determined by geometric values only.
自动分割是一种在 CT 成像上对器官进行分割的有效工具。主要用于临床环境,自动分割在研究中发挥着越来越重要的作用,尤其是在“大数据”时代分析数千张图像时。本研究旨在评估基于图谱的自动分割方法得出的心脏剂量学终点与金标准手动分割的准确性。
手动勾画了 54 例乳腺癌患者的心脏和心脏亚结构。其中 27 例患者用于构建自动分割图谱,其余 27 例患者用于验证性能。我们使用标准几何指标评估自动分割轮廓的准确性,并评估剂量学终点。
自动分割轮廓与心脏和心室的手动轮廓具有良好的几何重叠,Dice 相似性系数分别为 0.93±0.02(平均值±标准差)和 0.79±0.07。同样,自动分割和手动轮廓得出的剂量学参数之间存在很强的相关性(R 值为 0.955-1.000)。另一方面,左前降支的几何重叠很小(Dice 相似性系数为 0.09±0.07),但剂量学参数的表示仍可接受(R 值为 0.646-0.992)。
基于图谱的自动分割方法可以准确地勾画心脏结构,适用于研究目的。我们的研究结果表明,自动分割轮廓的质量不能仅通过几何值来确定。