Arjmandi Najmeh, Mosleh-Shirazi Mohammad Amin, Mohebbi Shokoufeh, Nasseri Shahrokh, Mehdizadeh Alireza, Pishevar Zohreh, Hosseini Sare, Tehranizadeh Amin Amiri, Momennezhad Mehdi
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Physics Unit, Department of Radio-Oncology, Shiraz University of Medical Sciences, Shiraz, Iran.
J Appl Clin Med Phys. 2025 Mar;26(3):e14569. doi: 10.1002/acm2.14569. Epub 2024 Dec 1.
This study aimed to investigate the dosimetric impact of deep-learning-based auto-contouring for clinical target volume (CTV) and organs at risk (OARs) delineation in prostate cancer radiotherapy planning. Additionally, we compared the geometric accuracy of auto-contouring system to the variability observed between human experts.
We evaluated 28 planning CT volumes, each with three contour sets: reference original contours (OC), auto-segmented contours (AC), and expert-defined manual contours (EC). We generated 3D-CRT and intensity-modulated radiation therapy (IMRT) plans for each contour set and compared their dosimetric characteristics using dose-volume histograms (DVHs), homogeneity index (HI), conformity index (CI), and gamma pass rate (3%/3 mm).
The geometric differences between automated contours and both their original manual reference contours and a second set of manually generated contours are smaller than the differences between two manually contoured sets for bladder, right femoral head (RFH), and left femoral head (LFH) structures. Furthermore, dose distribution accuracy using planning target volumes (PTVs) derived from automatically contoured CTVs and auto-contoured OARs demonstrated consistency with plans based on reference contours across all evaluated cases for both 3D-CRT and IMRT plans. For example, in IMRT plans, the average D for PTVs was 77.71 ± 0.53 Gy for EC plans, 77.58 ± 0.69 Gy for OC plans, and 77.62 ± 0.38 Gy for AC plans. Automated contouring significantly reduced contouring time, averaging 0.53 ± 0.08 min compared to 24.9 ± 4.5 min for manual delineation.
Our automated contouring system can reduce inter-expert variability and achieve dosimetric accuracy comparable to gold standard reference contours, highlighting its potential for streamlining clinical workflows. The quantitative analysis revealed no consistent trend of increasing or decreasing PTVs derived from automatically contoured CTVs and OAR doses due to automated contours, indicating minimal impact on treatment outcomes. These findings support the clinical feasibility of utilizing our deep-learning-based auto-contouring model for prostate cancer radiotherapy planning.
本研究旨在探讨基于深度学习的自动轮廓勾画对前列腺癌放射治疗计划中临床靶区(CTV)和危及器官(OARs)勾画的剂量学影响。此外,我们还将自动轮廓勾画系统的几何精度与人类专家之间观察到的变异性进行了比较。
我们评估了28个计划CT容积,每个容积有三组轮廓:参考原始轮廓(OC)、自动分割轮廓(AC)和专家定义的手动轮廓(EC)。我们为每组轮廓生成了三维适形放疗(3D-CRT)和调强放射治疗(IMRT)计划,并使用剂量体积直方图(DVHs)、均匀性指数(HI)、适形指数(CI)和伽马通过率(3%/3毫米)比较了它们的剂量学特征。
对于膀胱、右股骨头(RFH)和左股骨头(LFH)结构,自动轮廓与原始手动参考轮廓以及另一组手动生成的轮廓之间的几何差异小于两组手动轮廓之间的差异。此外,使用从自动勾画的CTV和自动勾画的OAR得出的计划靶区(PTV)的剂量分布准确性在3D-CRT和IMRT计划的所有评估病例中均显示与基于参考轮廓的计划一致。例如,在IMRT计划中,PTV的平均剂量对于EC计划为77.71±0.53 Gy,对于OC计划为77.58±0.69 Gy,对于AC计划为77.62±0.38 Gy。自动轮廓勾画显著减少了轮廓勾画时间,平均为0.53±0.08分钟,而手动勾画为24.9±4.5分钟。
我们的自动轮廓勾画系统可以减少专家间的变异性,并实现与金标准参考轮廓相当的剂量学准确性,突出了其简化临床工作流程的潜力。定量分析显示,由于自动轮廓,从自动勾画的CTV和OAR剂量得出的PTV没有一致的增加或减少趋势,表明对治疗结果的影响最小。这些发现支持了在前列腺癌放射治疗计划中使用我们基于深度学习的自动轮廓勾画模型的临床可行性。