文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

保乳手术后乳腺癌患者基于深度学习的靶区体积和危及器官自动分割的临床可行性

Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.

作者信息

Chung Seung Yeun, Chang Jee Suk, Choi Min Seo, Chang Yongjin, Choi Byong Su, Chun Jaehee, Keum Ki Chang, Kim Jin Sung, Kim Yong Bae

机构信息

Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.

Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Korea.

出版信息

Radiat Oncol. 2021 Feb 25;16(1):44. doi: 10.1186/s13014-021-01771-z.


DOI:10.1186/s13014-021-01771-z
PMID:33632248
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7905884/
Abstract

BACKGROUND: In breast cancer patients receiving radiotherapy (RT), accurate target delineation and reduction of radiation doses to the nearby normal organs is important. However, manual clinical target volume (CTV) and organs-at-risk (OARs) segmentation for treatment planning increases physicians' workload and inter-physician variability considerably. In this study, we evaluated the potential benefits of deep learning-based auto-segmented contours by comparing them to manually delineated contours for breast cancer patients. METHODS: CTVs for bilateral breasts, regional lymph nodes, and OARs (including the heart, lungs, esophagus, spinal cord, and thyroid) were manually delineated on planning computed tomography scans of 111 breast cancer patients who received breast-conserving surgery. Subsequently, a two-stage convolutional neural network algorithm was used. Quantitative metrics, including the Dice similarity coefficient (DSC) and 95% Hausdorff distance, and qualitative scoring by two panels from 10 institutions were used for analysis. Inter-observer variability and delineation time were assessed; furthermore, dose-volume histograms and dosimetric parameters were also analyzed using another set of patient data. RESULTS: The correlation between the auto-segmented and manual contours was acceptable for OARs, with a mean DSC higher than 0.80 for all OARs. In addition, the CTVs showed favorable results, with mean DSCs higher than 0.70 for all breast and regional lymph node CTVs. Furthermore, qualitative subjective scoring showed that the results were acceptable for all CTVs and OARs, with a median score of at least 8 (possible range: 0-10) for (1) the differences between manual and auto-segmented contours and (2) the extent to which auto-segmentation would assist physicians in clinical practice. The differences in dosimetric parameters between the auto-segmented and manual contours were minimal. CONCLUSIONS: The feasibility of deep learning-based auto-segmentation in breast RT planning was demonstrated. Although deep learning-based auto-segmentation cannot be a substitute for radiation oncologists, it is a useful tool with excellent potential in assisting radiation oncologists in the future. Trial registration Retrospectively registered.

摘要

背景:在接受放射治疗(RT)的乳腺癌患者中,准确的靶区勾画以及减少对附近正常器官的辐射剂量非常重要。然而,用于治疗计划的手动临床靶区体积(CTV)和危及器官(OARs)分割会显著增加医生的工作量以及医生之间的差异。在本研究中,我们通过将基于深度学习的自动分割轮廓与乳腺癌患者的手动勾画轮廓进行比较,评估了其潜在益处。 方法:在111例接受保乳手术的乳腺癌患者的计划计算机断层扫描上手动勾画双侧乳房、区域淋巴结和OARs(包括心脏、肺、食管、脊髓和甲状腺)的CTV。随后,使用两阶段卷积神经网络算法。使用包括骰子相似系数(DSC)和95%豪斯多夫距离在内的定量指标以及来自10个机构的两个小组的定性评分进行分析。评估了观察者间的差异和勾画时间;此外,还使用另一组患者数据对剂量体积直方图和剂量学参数进行了分析。 结果:OARs的自动分割轮廓与手动轮廓之间的相关性是可以接受的,所有OARs的平均DSC均高于0.80。此外,CTV显示出良好的结果,所有乳房和区域淋巴结CTV的平均DSC均高于0.70。此外,定性主观评分表明,所有CTV和OARs的结果都是可以接受的,对于(1)手动和自动分割轮廓之间的差异以及(2)自动分割在临床实践中对医生的辅助程度,中位数得分至少为8(可能范围:0 - 10)。自动分割轮廓与手动轮廓之间的剂量学参数差异最小。 结论:证明了基于深度学习的自动分割在乳腺癌放疗计划中的可行性。虽然基于深度学习的自动分割不能替代放射肿瘤学家,但它是一种在未来辅助放射肿瘤学家方面具有巨大潜力的有用工具。试验注册 回顾性注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b95/7905884/6ff022767659/13014_2021_1771_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b95/7905884/428d372b6581/13014_2021_1771_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b95/7905884/52c3a0752160/13014_2021_1771_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b95/7905884/3c2d2d0c7c79/13014_2021_1771_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b95/7905884/6ff022767659/13014_2021_1771_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b95/7905884/428d372b6581/13014_2021_1771_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b95/7905884/52c3a0752160/13014_2021_1771_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b95/7905884/3c2d2d0c7c79/13014_2021_1771_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b95/7905884/6ff022767659/13014_2021_1771_Fig4_HTML.jpg

相似文献

[1]
Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.

Radiat Oncol. 2021-2-25

[2]
The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer.

Radiat Oncol. 2021-6-23

[3]
Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region.

Phys Med Biol. 2018-7-11

[4]
Clinical evaluation of deep learning-based automatic clinical target volume segmentation: a single-institution multi-site tumor experience.

Radiol Med. 2023-10

[5]
Extensive clinical testing of Deep Learning Segmentation models for thorax and breast cancer radiotherapy planning.

Acta Oncol. 2023-10

[6]
Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer.

Radiother Oncol. 2020-12

[7]
Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.

Radiat Oncol. 2019-11-27

[8]
Evaluation of auto-segmentation for EBRT planning structures using deep learning-based workflow on cervical cancer.

Sci Rep. 2022-8-11

[9]
Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.

Radiother Oncol. 2020-3

[10]
Geometric and dosimetric evaluation of atlas based auto-segmentation of cardiac structures in breast cancer patients.

Radiother Oncol. 2018-8-11

引用本文的文献

[1]
A semi-automated workflow for cohort-wise preparation of radiotherapy data for dose-response modeling, including autosegmentation of organs at risk.

J Appl Clin Med Phys. 2025-7

[2]
Automated segmentation of target volumes in breast cancer radiotherapy, impact on target size and dose to organs at risk.

Clin Transl Radiat Oncol. 2025-5-28

[3]
Development and external multicentric validation of a deep learning-based clinical target volume segmentation model for whole-breast radiotherapy.

Phys Imaging Radiat Oncol. 2025-3-26

[4]
Geometric and dosimetric evaluation of a commercial AI auto-contouring tool on multiple anatomical sites in CT scans.

J Appl Clin Med Phys. 2025-6

[5]
Automated contouring for breast cancer radiotherapy in the isocentric lateral decubitus position: a neural network-based solution for enhanced precision and efficiency.

Strahlenther Onkol. 2025-6

[6]
Clinical feasibility of Ethos auto-segmentation for adaptive whole-breast cancer treatment.

Front Oncol. 2024-12-10

[7]
Automated Organ Segmentation for Radiation Therapy: A Comparative Analysis of AI-Based Tools Versus Manual Contouring in Korean Cancer Patients.

Cancers (Basel). 2024-10-30

[8]
LLM-driven multimodal target volume contouring in radiation oncology.

Nat Commun. 2024-10-24

[9]
The InterVision Framework: An Enhanced Fine-Tuning Deep Learning Strategy for Auto-Segmentation in Head and Neck.

J Pers Med. 2024-9-15

[10]
Validation of different automated segmentation models for target volume contouring in postoperative radiotherapy for breast cancer and regional nodal irradiation.

Clin Transl Radiat Oncol. 2024-9-11

本文引用的文献

[1]
External validation of deep learning-based contouring of head and neck organs at risk.

Phys Imaging Radiat Oncol. 2020-7-10

[2]
Artificial intelligence (AI) and interventional radiotherapy (brachytherapy): state of art and future perspectives.

J Contemp Brachytherapy. 2020-10

[3]
Evaluation of Deep Learning to Augment Image-Guided Radiotherapy for Head and Neck and Prostate Cancers.

JAMA Netw Open. 2020-11-2

[4]
A Deep Learning-Based Automated CT Segmentation of Prostate Cancer Anatomy for Radiation Therapy Planning-A Retrospective Multicenter Study.

Diagnostics (Basel). 2020-11-17

[5]
Dosimetric parameters associated with radiation-induced esophagitis in breast cancer patients undergoing regional nodal irradiation.

Radiother Oncol. 2021-2

[6]
Internal mammary and medial supraclavicular lymph node chain irradiation in stage I-III breast cancer (EORTC 22922/10925): 15-year results of a randomised, phase 3 trial.

Lancet Oncol. 2020-12

[7]
Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer.

Radiother Oncol. 2020-12

[8]
Quality of Regional Nodal Irradiation Plans in Breast Cancer Patients Across a Large Network-Can We Translate Results From Randomized Trials Into the Clinic?

Pract Radiat Oncol. 2021

[9]
Organ at risk delineation for radiation therapy clinical trials: Global Harmonization Group consensus guidelines.

Radiother Oncol. 2020-9

[10]
CNN-Based Quality Assurance for Automatic Segmentation of Breast Cancer in Radiotherapy.

Front Oncol. 2020-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索