Matias-Guiu Jordi A, Díaz-Álvarez Josefa, Ayala José Luis, Risco-Martín José Luis, Moreno-Ramos Teresa, Pytel Vanesa, Matias-Guiu Jorge, Carreras José Luis, Cabrera-Martín María Nieves
Department of Neurology, Hospital Clinico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain.
Department of Computer Architecture and Communications, Centro Universitario de Mérida, Universidad de Extremadura, Mérida, Spain.
Front Aging Neurosci. 2018 Jul 31;10:230. doi: 10.3389/fnagi.2018.00230. eCollection 2018.
Primary progressive aphasia (PPA) is a clinical syndrome characterized by the neurodegeneration of language brain systems. Three main clinical forms (non-fluent, semantic, and logopenic PPA) have been recognized, but applicability of the classification and the capacity to predict the underlying pathology is controversial. We aimed to study FDG-PET imaging data in a large consecutive case series of patients with PPA to cluster them into different subtypes according to regional brain metabolism. 122 FDG-PET imaging studies belonging to 91 PPA patients and 28 healthy controls were included. We developed a hierarchical agglomerative cluster analysis with Ward's linkage method, an unsupervised clustering algorithm. We conducted voxel-based brain mapping analysis to evaluate the patterns of hypometabolism of each identified cluster. Cluster analysis confirmed the three current PPA variants, but the optimal number of clusters according to Davies-Bouldin index was 6 subtypes of PPA. This classification resulted from splitting non-fluent variant into three subtypes, while logopenic PPA was split into two subtypes. Voxel-brain mapping analysis displayed different patterns of hypometabolism for each PPA group. New subtypes also showed a different clinical course and were predictive of amyloid imaging results. Our study found that there are more than the three already recognized subtypes of PPA. These new subtypes were more predictive of clinical course and showed different neuroimaging patterns. Our results support the usefulness of FDG-PET in evaluating PPA, and the applicability of computational methods in the analysis of brain metabolism for improving the classification of neurodegenerative disorders.
原发性进行性失语症(PPA)是一种以语言脑系统神经退化为特征的临床综合征。已识别出三种主要临床形式(非流利型、语义型和词义性PPA),但该分类的适用性以及预测潜在病理的能力存在争议。我们旨在研究PPA患者的一个大型连续病例系列的FDG-PET成像数据,以便根据脑区代谢将他们聚类为不同亚型。纳入了属于91例PPA患者和28名健康对照的122项FDG-PET成像研究。我们采用Ward连锁法开发了一种层次凝聚聚类分析,这是一种无监督聚类算法。我们进行了基于体素的脑图谱分析,以评估每个识别出的聚类的代谢减低模式。聚类分析证实了目前的三种PPA变体,但根据戴维斯-布尔丁指数,最佳聚类数为PPA的6个亚型。这种分类是通过将非流利型变体分为三个亚型,同时将词义性PPA分为两个亚型而得到的。体素脑图谱分析显示每个PPA组有不同的代谢减低模式。新亚型也显示出不同的临床病程,并且可以预测淀粉样蛋白成像结果。我们的研究发现,PPA的亚型不止已识别出的三种。这些新亚型对临床病程更具预测性,并显示出不同的神经影像学模式。我们的结果支持FDG-PET在评估PPA中的有用性,以及计算方法在脑代谢分析中用于改善神经退行性疾病分类的适用性。