Suppr超能文献

锕衰变途径中DOTA螯合放射性药物的结构与性质。

Structure and properties of DOTA-chelated radiopharmaceuticals within the Ac decay pathway.

作者信息

Khabibullin Artem R, Karolak Aleksandra, Budzevich Mikalai M, McLaughlin Mark L, Morse David L, Woods Lilia M

机构信息

Department of Physics , University of South Florida , Tampa , FL , USA . Email:

Department of Integrated Mathematical Oncology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA.

出版信息

Medchemcomm. 2018 Jun 6;9(7):1155-1163. doi: 10.1039/c8md00170g. eCollection 2018 Jul 1.

Abstract

The successful delivery of toxic cargo directly to tumor cells is of primary importance in targeted (α) particle therapy. Complexes of radioactive atoms with the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelating agent are considered as effective materials for such delivery processes. The DOTA chelator displays high affinity to radioactive metal isotopes and retains this capability after conjugation to tumor targeting moieties. Although the α-decay chains are well defined for many isotopes, the stability of chelations during the decay process and the impact of released energy on their structures remain unknown. The radioactive isotope Ac is an α-particle emitter that can be easily chelated by DOTA. However, Ac has a complex decay chain with four α-particle emissions during decay of each radionuclide. To advance our fundamental understanding of the consequences of α-decay on the stability of tumor-targeted Ac-DOTA conjugate radiopharmaceuticals, we performed first principles calculations of the structure, stability, and electronic properties of the DOTA chelator to the Ac radioactive isotope, and the initial daughters in the decay chain, Ac, Fr, At and Bi. Our calculations show that the atomic positions, binding energies, and electron localization functions are affected by the interplay between spin-orbit coupling, weak dispersive interactions, and environmental factors. Future empirical measurements may be guided and interpreted in light of these results.

摘要

在靶向α粒子治疗中,将有毒物质直接成功递送至肿瘤细胞至关重要。放射性原子与1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(DOTA)螯合剂形成的复合物被认为是此类递送过程的有效材料。DOTA螯合剂对放射性金属同位素具有高亲和力,并且在与肿瘤靶向部分缀合后仍保持这种能力。尽管许多同位素的α衰变链已明确,但衰变过程中螯合的稳定性以及释放的能量对其结构的影响仍然未知。放射性同位素锕(Ac)是一种α粒子发射体,可轻松被DOTA螯合。然而,Ac具有复杂的衰变链,每个放射性核素衰变期间会发射四个α粒子。为了加深我们对α衰变对肿瘤靶向Ac-DOTA共轭放射性药物稳定性影响的基本理解,我们对DOTA螯合剂与Ac放射性同位素及其衰变链中的初始子体Ac、Fr、At和Bi的结构、稳定性和电子性质进行了第一性原理计算。我们的计算表明,原子位置、结合能和电子定位函数受自旋轨道耦合、弱色散相互作用和环境因素之间相互作用的影响。未来的实证测量可能会根据这些结果得到指导和解释。

相似文献

1
Structure and properties of DOTA-chelated radiopharmaceuticals within the Ac decay pathway.
Medchemcomm. 2018 Jun 6;9(7):1155-1163. doi: 10.1039/c8md00170g. eCollection 2018 Jul 1.
2
Mathematical Modeling of Alpha Particle Generators and Chelator Stability.
Cancer Biother Radiopharm. 2023 Oct;38(8):528-535. doi: 10.1089/cbr.2020.4112. Epub 2021 Jan 21.
3
Radiolabeling of a polypeptide polymer for intratumoral delivery of alpha-particle emitter, Ac, and beta-particle emitter, Lu.
Nucl Med Biol. 2022 Jan-Feb;104-105:11-21. doi: 10.1016/j.nucmedbio.2021.11.001. Epub 2021 Nov 10.
5
Evaluation of an Anti-HER2 Nanobody Labeled with Ac for Targeted α-Particle Therapy of Cancer.
Mol Pharm. 2018 Apr 2;15(4):1457-1466. doi: 10.1021/acs.molpharmaceut.7b00985. Epub 2018 Mar 7.
6
Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes.
Nucl Med Biol. 2015 May;42(5):428-438. doi: 10.1016/j.nucmedbio.2014.12.007. Epub 2014 Dec 20.
7
Targeted Auger electron-emitter therapy: Radiochemical approaches for thallium-201 radiopharmaceuticals.
Nucl Med Biol. 2021 Jul-Aug;98-99:1-7. doi: 10.1016/j.nucmedbio.2021.03.012. Epub 2021 Apr 17.
9
Preclinical evaluation of [Ac]Ac-DOTA-TATE for treatment of lung neuroendocrine neoplasms.
Eur J Nucl Med Mol Imaging. 2021 Oct;48(11):3408-3421. doi: 10.1007/s00259-021-05315-1. Epub 2021 Mar 26.

引用本文的文献

1
Developments in radionanotheranostic strategies for precision diagnosis and treatment of prostate cancer.
EJNMMI Radiopharm Chem. 2024 Aug 24;9(1):62. doi: 10.1186/s41181-024-00295-7.
2
Towards Effective Targeted Alpha Therapy for Neuroendocrine Tumours: A Review.
Pharmaceuticals (Basel). 2024 Mar 4;17(3):334. doi: 10.3390/ph17030334.
3
Alpha-Emitting Radionuclides: Current Status and Future Perspectives.
Pharmaceuticals (Basel). 2024 Jan 8;17(1):76. doi: 10.3390/ph17010076.
4
Theoretical Study of Actinide(III)-DOTA Complexes.
ACS Omega. 2021 May 11;6(20):13321-13330. doi: 10.1021/acsomega.1c01292. eCollection 2021 May 25.
5
Atomic Nanogenerators in Targeted Alpha Therapies: Curie's Legacy in Modern Cancer Management.
Pharmaceuticals (Basel). 2020 Apr 23;13(4):76. doi: 10.3390/ph13040076.
6
Development of Targeted Alpha Particle Therapy for Solid Tumors.
Molecules. 2019 Nov 26;24(23):4314. doi: 10.3390/molecules24234314.

本文引用的文献

2
Radium-223 Therapy of Bone Metastases in Prostate Cancer.
Semin Nucl Med. 2016 Nov;46(6):544-556. doi: 10.1053/j.semnuclmed.2016.07.007. Epub 2016 Sep 15.
3
Active actinium.
Nat Chem. 2016 Oct 21;8(11):1084. doi: 10.1038/nchem.2653.
4
225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer.
J Nucl Med. 2016 Dec;57(12):1941-1944. doi: 10.2967/jnumed.116.178673. Epub 2016 Jul 7.
5
Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes.
Nucl Med Biol. 2015 May;42(5):428-438. doi: 10.1016/j.nucmedbio.2014.12.007. Epub 2014 Dec 20.
6
Cancer drug delivery: considerations in the rational design of nanosized bioconjugates.
Bioconjug Chem. 2014 Dec 17;25(12):2093-100. doi: 10.1021/bc500481x. Epub 2014 Nov 19.
7
Molecular pathways: targeted α-particle radiation therapy.
Clin Cancer Res. 2013 Feb 1;19(3):530-7. doi: 10.1158/1078-0432.CCR-12-0298. Epub 2012 Dec 10.
8
Microdosimetry for targeted alpha therapy of cancer.
Comput Math Methods Med. 2012;2012:153212. doi: 10.1155/2012/153212. Epub 2012 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验