J Agric Food Chem. 2018 Sep 5;66(35):9335-9343. doi: 10.1021/acs.jafc.8b02630. Epub 2018 Aug 23.
In this work, we use antisolvent precipitation to prepare zein/carboxymethylated short-chain amylose (CSA) complex nanoparticles for insulin encapsulation, showing that insulin-loaded zein/CSA complex nanoparticles are homogeneous, generally exhibiting sizes of <200 nm with a narrow distribution (polydispersity index < 0.100), spherical shape, and strong negative charge (-40 mV). Fourier transform infrared spectroscopy analysis reveals that the formation of the above nanoparticles is mainly driven by hydrophobic, hydrogen-bonding, and electrostatic interactions between CSA, insulin, and zein. In comparison to zein nanoparticles, zein/CSA complex nanoparticles feature much higher insulin encapsulation efficiency (45.8 versus 90.5%, respectively) and are essentially nontoxic to Caco-2 cells. Thus, this work provides new insights into the design of drug delivery systems and is expected to inspire their further development.
在这项工作中,我们使用抗溶剂沉淀法制备玉米醇溶蛋白/羧甲基短链淀粉(CSA)复合纳米粒用于包载胰岛素,结果表明载胰岛素的玉米醇溶蛋白/CSA 复合纳米粒粒径均一,普遍<200nm,分布窄(多分散指数<0.100),呈球形,带强负电荷(-40mV)。傅里叶变换红外光谱分析表明,上述纳米粒的形成主要是由 CSA、胰岛素和玉米醇溶蛋白之间的疏水、氢键和静电相互作用驱动的。与玉米醇溶蛋白纳米粒相比,玉米醇溶蛋白/CSA 复合纳米粒具有更高的胰岛素包封效率(分别为 45.8%和 90.5%),对 Caco-2 细胞基本无毒性。因此,这项工作为药物传递系统的设计提供了新的见解,并有望激发其进一步发展。