Janelia Research Campus , Howard Hughes Medical Institute , Ashburn , Virginia 20147 , United States.
Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States.
ACS Chem Biol. 2018 Oct 19;13(10):2888-2896. doi: 10.1021/acschembio.8b00524. Epub 2018 Aug 29.
The utility of small molecules to probe or perturb biological systems is limited by the lack of cell-specificity. "Masking" the activity of small molecules using a general chemical modification and "unmasking" it only within target cells overcomes this limitation. To this end, we have developed a selective enzyme-substrate pair consisting of engineered variants of E. coli nitroreductase (NTR) and a 2-nitro- N-methylimidazolyl (NM) masking group. To discover and optimize this NTR-NM system, we synthesized a series of fluorogenic substrates containing different nitroaromatic masking groups, confirmed their stability in cells, and identified the best substrate for NTR. We then engineered the enzyme for improved activity in mammalian cells, ultimately yielding an enzyme variant (enhanced NTR, or eNTR) that possesses up to 100-fold increased activity over wild-type NTR. These improved NTR enzymes combined with the optimal NM masking group enable rapid, selective unmasking of dyes, indicators, and drugs to genetically defined populations of cells.
小分子在生物系统中探测或干扰的实用性受到缺乏细胞特异性的限制。使用通用化学修饰来“掩盖”小分子的活性,并仅在靶细胞内“揭开”它,克服了这一限制。为此,我们开发了一种由工程化的大肠杆菌硝基还原酶(NTR)变体和 2-硝基-N-甲基咪唑基(NM)掩蔽基团组成的选择性酶-底物对。为了发现和优化这个 NTR-NM 系统,我们合成了一系列含有不同硝基芳烃掩蔽基团的荧光底物,证实了它们在细胞中的稳定性,并确定了最适合 NTR 的底物。然后我们对酶进行了工程改造,以提高其在哺乳动物细胞中的活性,最终得到了一种酶变体(增强型 NTR,或 eNTR),其活性比野生型 NTR 提高了多达 100 倍。这些改进的 NTR 酶与最佳的 NM 掩蔽基团相结合,可快速、选择性地对遗传定义的细胞群体进行染料、指示剂和药物的“揭开”。