Suppr超能文献

推断网络中故障蔓延动态的一般方法。

General methodology for inferring failure-spreading dynamics in networks.

机构信息

Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195.

Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195

出版信息

Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8125-E8134. doi: 10.1073/pnas.1722313115. Epub 2018 Aug 15.

Abstract

A generic modeling framework to infer the failure-spreading process based on failure times of individual nodes is proposed and tested in four simulation studies: one for cascading failures in interdependent power and transportation networks, one for influenza epidemics, one benchmark test case for congestion cascade in a transportation network, and one benchmark test case for cascading power outages. Four general failure-spreading mechanisms-external, temporal, spatial, and functional-are quantified to capture what drives the spreading of failures. With the failure time of each node given, the proposed methodology demonstrates remarkable capability of inferring the underlying general failure-spreading mechanisms and accurately reconstructing the failure-spreading process in all four simulation studies. The analysis of the two benchmark test cases also reveals the robustness of the proposed methodology: It is shown that a failure-spreading process embedded by specific failure-spreading mechanisms such as flow redistribution can be captured with low uncertainty by our model. The proposed methodology thereby presents a promising channel for providing a generally applicable framework for modeling, understanding, and controlling failure spreading in a variety of systems.

摘要

提出并测试了一种基于个体节点失效时间推断失效传播过程的通用建模框架,该框架在四个模拟研究中得到了验证:一个是关于相互依存的电力和交通网络中的级联失效,一个是关于流感疫情,一个是交通网络中拥塞级联的基准测试案例,另一个是关于级联停电的基准测试案例。量化了四种通用的失效传播机制——外部、时间、空间和功能,以捕捉导致失效传播的因素。对于每个节点的失效时间,所提出的方法展示了推断潜在的一般失效传播机制的显著能力,并在所有四个模拟研究中准确地重建了失效传播过程。对两个基准测试案例的分析也揭示了所提出的方法的稳健性:表明我们的模型可以以较低的不确定性捕捉由特定失效传播机制(例如流量重新分配)嵌入的失效传播过程。因此,该方法为在各种系统中建模、理解和控制失效传播提供了一种通用适用的框架。

相似文献

1
General methodology for inferring failure-spreading dynamics in networks.推断网络中故障蔓延动态的一般方法。
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8125-E8134. doi: 10.1073/pnas.1722313115. Epub 2018 Aug 15.
2
Universal behavior of cascading failures in interdependent networks.**译文**:**相互依存网络中的级联故障的普遍行为**。
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22452-22457. doi: 10.1073/pnas.1904421116. Epub 2019 Oct 17.
3
Cascading failures in spatially-embedded random networks.空间嵌入随机网络中的级联失效。
PLoS One. 2014 Jan 6;9(1):e84563. doi: 10.1371/journal.pone.0084563. eCollection 2014.
10
Prediction of Cascading Failures in Spatial Networks.空间网络中连锁故障的预测
PLoS One. 2016 Apr 19;11(4):e0153904. doi: 10.1371/journal.pone.0153904. eCollection 2016.

本文引用的文献

1
Where to look for power Laws in urban road networks?在哪里寻找城市道路网络中的幂律?
Appl Netw Sci. 2018;3(1):4. doi: 10.1007/s41109-018-0060-9. Epub 2018 Apr 4.
2
Cascading Failures as Continuous Phase-Space Transitions.作为连续相空间转变的级联故障。
Phys Rev Lett. 2017 Dec 15;119(24):248302. doi: 10.1103/PhysRevLett.119.248302. Epub 2017 Dec 14.
9
Infectious disease transmission as a forensic problem: who infected whom?传染病传播作为一个法医学问题:谁感染了谁?
J R Soc Interface. 2013 Feb 6;10(81):20120955. doi: 10.1098/rsif.2012.0955. Print 2013 Apr 6.
10
Suppressing cascades of load in interdependent networks.抑制相依网络中的负载级联。
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):E680-9. doi: 10.1073/pnas.1110586109. Epub 2012 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验