Suppr超能文献

蓝藻肽聚糖合成优化单细胞蓝藻集胞藻 PCC 6803 中的氮素利用。

Cyanophycin Synthesis Optimizes Nitrogen Utilization in the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6803.

机构信息

Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, Eberhard Karls Universität Tübingen, Tübingen, Germany.

Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Organismic Interactions, Eberhard Karls Universität Tübingen, Tübingen, Germany

出版信息

Appl Environ Microbiol. 2018 Oct 1;84(20). doi: 10.1128/AEM.01298-18. Print 2018 Oct 15.

Abstract

Cyanophycin is a carbon/nitrogen storage polymer widely distributed in most cyanobacterial strains and in a few heterotrophic bacteria. It is a nonribosomal polypeptide consisting of equimolar amounts of aspartate and arginine. Here, we focused on the physiological function and cell biology of cyanophycin in the unicellular nondiazotrophic cyanobacterium sp. strain PCC 6803. To study the cellular localization of the cyanophycin-synthesizing enzyme CphA during cyanophycin synthesis and degradation, we fused it to green fluorescent protein. When CphA was inactive, it localized diffusely in the cytoplasm. When cyanophycin synthesis was triggered, CphA first aggregated into foci and later localized on the surface of cyanophycin granules. In the corresponding cell extracts, localization of CphA on the cyanophycin granule surface required Mg During cyanophycin degradation, CphA dissociated from the granule surface and returned to its inactive form in the cytoplasm. To investigate the physiological role of cyanophycin, we compared wild-type cells with a CphA-deficient mutant. Under standard laboratory conditions, the ability to synthesize cyanophycin did not confer a growth advantage. To mimic the situation in natural habitats, cells were cultured with a fluctuating and limiting nitrogen supplementation and/or day/night cycles. Under all of these conditions, cyanophycin provided a fitness advantage to the wild type over the mutant lacking cyanophycin. During resuscitation from nitrogen starvation, wild-type cells accumulated cyanophycin during the night and used it as an internal nitrogen source during the day. This demonstrates that cyanophycin can be used as a temporary nitrogen storage to uncouple nitrogen assimilation from photosynthesis. We clarified the elusive biological function of cyanophycin in the nondiazotrophic cyanobacterium sp. PCC 6803. Cyanophycin is a dynamic carbon/nitrogen storage polymer (multi-arginyl-l-polyaspartate) that is conditionally present in most cyanobacteria and a few heterotrophic bacteria as cellular inclusion granules. Here, we show that the cyanophycin-synthesizing enzyme CphA in the nonactive state localizes diffusely in the cytoplasm. When cyanophycin synthesis is triggered, active CphA first aggregates into foci and then covers the surface of mature cyanophycin granules, which requires Mg as a cofactor. Cyanophycin accumulation enables sp. to optimize nitrogen assimilation under nitrogen-poor conditions, in particular when the nitrogen supply fluctuates and during day/night cycles, by allowing continuous nitrogen assimilation and storage. Therefore, cyanophycin provides the wild-type cyanobacterium with a clear fitness advantage over non-cyanophycin-producing cells in natural environments with fluctuating nitrogen supply.

摘要

藻青素是一种广泛存在于大多数蓝藻菌株和少数异养细菌中的碳/氮储存聚合物。它是一种由等摩尔量的天冬氨酸和精氨酸组成的非核糖体多肽。在这里,我们专注于单细胞非固氮蓝藻 sp. 菌株 PCC 6803 中藻青素的生理功能和细胞生物学。为了研究藻青素合成酶 CphA 在藻青素合成和降解过程中的细胞定位,我们将其与绿色荧光蛋白融合。当 CphA 不活跃时,它在细胞质中弥散定位。当触发藻青素合成时,CphA 首先聚集形成焦点,然后定位于成熟的藻青素颗粒表面。在相应的细胞提取物中,CphA 在藻青素颗粒表面的定位需要 Mg2+作为辅助因子。在藻青素降解过程中,CphA 从颗粒表面解离,并在细胞质中恢复到不活跃形式。为了研究藻青素的生理作用,我们比较了野生型细胞和 CphA 缺陷突变体。在标准实验室条件下,合成藻青素的能力并没有赋予生长优势。为了模拟自然栖息地的情况,细胞在波动和有限的氮补充和/或昼夜循环中进行培养。在所有这些条件下,藻青素都为野生型提供了相对于缺乏藻青素的突变体的适应性优势。在从氮饥饿中复苏期间,野生型细胞在夜间积累藻青素,并在白天将其用作内部氮源。这表明藻青素可用作临时氮储存,将氮同化与光合作用解耦。我们阐明了非固氮蓝藻 sp. PCC 6803 中藻青素难以捉摸的生物学功能。藻青素是一种动态的碳/氮储存聚合物(多精氨酸-L-聚天冬氨酸),作为细胞内含物颗粒存在于大多数蓝藻和少数异养细菌中。在这里,我们表明非活性状态下的藻青素合成酶 CphA 在细胞质中弥散定位。当触发藻青素合成时,活性 CphA 首先聚集形成焦点,然后覆盖成熟藻青素颗粒的表面,这需要 Mg2+作为辅助因子。藻青素的积累使 sp. 能够在氮贫乏条件下优化氮同化,特别是在氮供应波动和昼夜循环期间,通过允许连续的氮同化和储存。因此,在氮供应波动的自然环境中,藻青素为野生型蓝藻提供了相对于非产藻青素细胞的明显适应性优势。

相似文献

引用本文的文献

7
Chlorophyll biosynthesis under the control of arginine metabolism.在精氨酸代谢的控制下进行叶绿素生物合成。
Cell Rep. 2023 Nov 28;42(11):113265. doi: 10.1016/j.celrep.2023.113265. Epub 2023 Oct 20.

本文引用的文献

3
How Cyanobacteria went green.蓝藻是如何变绿的。
Science. 2017 Mar 31;355(6332):1372-1373. doi: 10.1126/science.aam9365.
7
PipX, the coactivator of NtcA, is a global regulator in cyanobacteria.PipX,NtcA 的共激活因子,是蓝细菌中的一个全局调控因子。
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):E2423-30. doi: 10.1073/pnas.1404097111. Epub 2014 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验