Suppr超能文献

用于递送内源性或工程化治疗分子的乳酸菌

Lactic Acid Bacteria for Delivery of Endogenous or Engineered Therapeutic Molecules.

作者信息

Bron Peter A, Kleerebezem Michiel

机构信息

NIZO Food Research BV, Ede, Netherlands.

BE-Basic Foundation, Delft, Netherlands.

出版信息

Front Microbiol. 2018 Aug 3;9:1821. doi: 10.3389/fmicb.2018.01821. eCollection 2018.

Abstract

Food-grade lactic acid bacteria (LAB) are considered suitable vehicles for the production and/or delivery of health promoting or therapeutic, bioactive molecules. The molecules considered for health-beneficial use include the endogenous effector molecules produced by probiotics (mostly lactobacilli), as well as heterologous bioactives that can be produced in LAB by genetic engineering (mostly using lactococci). Both strategies aim to deliver appropriate dosages of specific bioactive molecules to the site of action. This review uses specific examples of both strategies to illustrate the different avenues of research involved in these applications as well as their translation to human health-promoting applications. These examples pinpoint that despite the promising perspectives of these approaches, the evidence for their effective applications in human populations is lagging behind.

摘要

食品级乳酸菌(LAB)被认为是生产和/或递送促进健康或治疗性生物活性分子的合适载体。用于有益健康用途的分子包括益生菌(主要是乳酸杆菌)产生的内源性效应分子,以及可通过基因工程在乳酸菌中产生的异源生物活性物质(主要使用乳酸球菌)。这两种策略的目的都是将适当剂量的特定生物活性分子递送至作用部位。本综述使用这两种策略的具体例子来说明这些应用所涉及的不同研究途径,以及它们向促进人类健康应用的转化。这些例子指出,尽管这些方法前景广阔,但它们在人群中有效应用的证据仍滞后。

相似文献

1
Lactic Acid Bacteria for Delivery of Endogenous or Engineered Therapeutic Molecules.
Front Microbiol. 2018 Aug 3;9:1821. doi: 10.3389/fmicb.2018.01821. eCollection 2018.
2
Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of : The Lactic Acid Bacterium Model.
Front Bioeng Biotechnol. 2020 Nov 4;8:517166. doi: 10.3389/fbioe.2020.517166. eCollection 2020.
3
Engineering lactococci and lactobacilli for human health.
Curr Opin Microbiol. 2013 Jun;16(3):278-83. doi: 10.1016/j.mib.2013.06.002. Epub 2013 Jul 11.
4
Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides.
Appl Microbiol Biotechnol. 2019 Mar;103(5):2053-2066. doi: 10.1007/s00253-019-09628-y. Epub 2019 Jan 17.
5
Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option.
Appl Microbiol Biotechnol. 2016 Jul;100(13):5691-701. doi: 10.1007/s00253-016-7557-x. Epub 2016 May 7.
6
Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update.
FEMS Microbiol Lett. 2013 Jul;344(1):1-9. doi: 10.1111/1574-6968.12159. Epub 2013 May 16.
7
[Advances in the use of lactic acid bacteria as mucosal delivery vectors of therapeutic molecules].
Sheng Wu Gong Cheng Xue Bao. 2021 Jul 25;37(7):2272-2282. doi: 10.13345/j.cjb.200482.
9
Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications.
Microb Cell Fact. 2016 May 3;15:70. doi: 10.1186/s12934-016-0468-9.

引用本文的文献

2
Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders.
Signal Transduct Target Ther. 2024 Oct 4;9(1):263. doi: 10.1038/s41392-024-01952-8.
3
Immunogenicity and protective efficacy of a recombinant lactococcus lactis vaccine against HSV-1 infection.
Microb Cell Fact. 2024 Sep 9;23(1):244. doi: 10.1186/s12934-024-02517-8.
4
What is the role of microbial biotechnology and genetic engineering in medicine?
Microbiologyopen. 2024 Apr;13(2):e1406. doi: 10.1002/mbo3.1406.
7
Expanding natural transformation to improve beneficial lactic acid bacteria.
FEMS Microbiol Rev. 2022 Jul 20;46(4). doi: 10.1093/femsre/fuac014.
8
peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy.
Science. 2021 Aug 27;373(6558):1040-1046. doi: 10.1126/science.abc9113.
9
The Role of Mucosal Immunity and Recombinant Probiotics in SARS-CoV2 Vaccine Development.
Probiotics Antimicrob Proteins. 2021 Oct;13(5):1239-1253. doi: 10.1007/s12602-021-09773-9. Epub 2021 Mar 26.

本文引用的文献

1
Identification of probiotic effector molecules: present state and future perspectives.
Curr Opin Biotechnol. 2018 Feb;49:217-223. doi: 10.1016/j.copbio.2017.10.007. Epub 2017 Nov 16.
4
The Evolution of gene regulation research in Lactococcus lactis.
FEMS Microbiol Rev. 2017 Aug 1;41(Supp_1):S220-S243. doi: 10.1093/femsre/fux028.
5
Lifestyles in transition: evolution and natural history of the genus Lactobacillus.
FEMS Microbiol Rev. 2017 Aug 1;41(Supp_1):S27-S48. doi: 10.1093/femsre/fux030.
6
Lactic acid bacteria - promising vaccine vectors: possibilities, limitations, doubts.
J Appl Microbiol. 2017 Aug;123(2):325-339. doi: 10.1111/jam.13446. Epub 2017 Apr 4.
7
Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option.
Appl Microbiol Biotechnol. 2016 Jul;100(13):5691-701. doi: 10.1007/s00253-016-7557-x. Epub 2016 May 7.
8
Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system.
J Control Release. 2016 May 28;230:79-87. doi: 10.1016/j.jconrel.2016.04.009. Epub 2016 Apr 7.
10
Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination.
Appl Microbiol Biotechnol. 2015 Apr;99(7):2967-77. doi: 10.1007/s00253-015-6498-0. Epub 2015 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验