Suppr超能文献

耦合的人类与自然系统中的因果推断

Causal inference in coupled human and natural systems.

机构信息

Carey Business School, Johns Hopkins University, Baltimore, MD 21202.

Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205.

出版信息

Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5311-5318. doi: 10.1073/pnas.1805563115. Epub 2018 Aug 20.

Abstract

Coupled human and natural systems (CHANS) are complex, dynamic, interconnected systems with feedback across social and environmental dimensions. This feedback leads to formidable challenges for causal inference. Two significant challenges involve assumptions about excludability and the absence of interference. These two assumptions have been largely unexplored in the CHANS literature, but when either is violated, causal inferences from observable data are difficult to interpret. To explore their plausibility, structural knowledge of the system is requisite, as is an explicit recognition that most causal variables in CHANS affect a coupled pairing of environmental and human elements. In a large CHANS literature that evaluates marine protected areas, nearly 200 studies attempt to make causal claims, but few address the excludability assumption. To examine the relevance of interference in CHANS, we develop a stylized simulation of a marine CHANS with shocks that can represent policy interventions, ecological disturbances, and technological disasters. Human and capital mobility in CHANS is both a cause of interference, which biases inferences about causal effects, and a moderator of the causal effects themselves. No perfect solutions exist for satisfying excludability and interference assumptions in CHANS. To elucidate causal relationships in CHANS, multiple approaches will be needed for a given causal question, with the aim of identifying sources of bias in each approach and then triangulating on credible inferences. Within CHANS research, and sustainability science more generally, the path to accumulating an evidence base on causal relationships requires skills and knowledge from many disciplines and effective academic-practitioner collaborations.

摘要

耦合的人类和自然系统 (CHANS) 是复杂、动态、相互关联的系统,具有跨越社会和环境维度的反馈。这种反馈给因果推断带来了巨大的挑战。两个重大挑战涉及排除假设和不存在干扰假设。这两个假设在 CHANS 文献中基本上没有被探讨过,但是如果违反了其中任何一个假设,从可观察数据中进行因果推断就很难解释。为了探索它们的合理性,需要系统的结构知识,并且明确认识到 CHANS 中的大多数因果变量都会影响环境和人类元素的耦合对。在评估海洋保护区的大量 CHANS 文献中,近 200 项研究试图做出因果主张,但很少有研究解决排除假设问题。为了研究干扰在 CHANS 中的相关性,我们开发了一个海洋 CHANS 的简化模拟,其中的冲击可以代表政策干预、生态干扰和技术灾害。CHANS 中的人类和资本流动既是干扰的原因,会使因果效应推断产生偏差,也是因果效应本身的调节因素。在 CHANS 中,没有完美的解决方案可以满足排除假设和干扰假设。为了阐明 CHANS 中的因果关系,对于给定的因果问题需要采用多种方法,目的是识别每种方法中的偏差来源,然后对可信推断进行三角测量。在 CHANS 研究中,以及更广泛的可持续性科学中,积累因果关系证据基础的途径需要来自多个学科的技能和知识,以及有效的学术-实践者合作。

相似文献

1
Causal inference in coupled human and natural systems.耦合的人类与自然系统中的因果推断
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5311-5318. doi: 10.1073/pnas.1805563115. Epub 2018 Aug 20.
2
Coupled human and natural systems.耦合的人类与自然系统
Ambio. 2007 Dec;36(8):639-49. doi: 10.1579/0044-7447(2007)36[639:chans]2.0.co;2.
6
Causal assumptions and causal inference in ecological experiments.生态实验中的因果假设与因果推断。
Trends Ecol Evol. 2021 Dec;36(12):1141-1152. doi: 10.1016/j.tree.2021.08.008. Epub 2021 Sep 16.
8
Navigating causal reasoning in sustainability science.驾驭可持续性科学中的因果推理。
Ambio. 2024 Nov;53(11):1618-1631. doi: 10.1007/s13280-024-02047-y. Epub 2024 Jul 17.

引用本文的文献

3
Causal claims, causal assumptions and protected area impact.因果关系主张、因果假设与保护区影响。
Nature. 2025 Feb;638(8052):E40-E41. doi: 10.1038/s41586-024-08512-8. Epub 2025 Feb 26.
4
Shared governance increases marine protected area effectiveness.共同治理可提高海洋保护区的有效性。
PLoS One. 2025 Jan 8;20(1):e0315896. doi: 10.1371/journal.pone.0315896. eCollection 2025.
7
Protection efforts have resulted in ~10% of existing fish biomass on coral reefs.保护工作已经使珊瑚礁上现有的鱼类生物量增加了约 10%。
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2308605121. doi: 10.1073/pnas.2308605121. Epub 2024 Oct 7.
8
Navigating causal reasoning in sustainability science.驾驭可持续性科学中的因果推理。
Ambio. 2024 Nov;53(11):1618-1631. doi: 10.1007/s13280-024-02047-y. Epub 2024 Jul 17.

本文引用的文献

1
Tracking the global footprint of fisheries.追踪渔业的全球足迹。
Science. 2018 Feb 23;359(6378):904-908. doi: 10.1126/science.aao5646. Epub 2018 Feb 22.
2
Robust research needs many lines of evidence.强有力的研究需要多方面的证据。
Nature. 2018 Jan 25;553(7689):399-401. doi: 10.1038/d41586-018-01023-3.
3
Seafood prices reveal impacts of a major ecological disturbance.海鲜价格揭示了一次重大生态扰动的影响。
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1512-1517. doi: 10.1073/pnas.1617948114. Epub 2017 Jan 30.
9
Detecting causality in complex ecosystems.检测复杂生态系统中的因果关系。
Science. 2012 Oct 26;338(6106):496-500. doi: 10.1126/science.1227079. Epub 2012 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验