Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA.
Nat Plants. 2018 Sep;4(9):655-661. doi: 10.1038/s41477-018-0231-9. Epub 2018 Aug 20.
Nitrogen limits primary production in almost every biome on Earth. Symbiotic nitrogen fixation, conducted by certain angiosperms and their endosymbiotic bacteria, is the largest potential natural source of new nitrogen into the biosphere, influencing global primary production, carbon sequestration and element cycling. Because symbiotic nitrogen fixation represents an alternative to soil nitrogen uptake, much of the work on symbiotic nitrogen fixation regulation has focused on soil nitrogen availability. However, because symbiotic nitrogen fixation is an energetically expensive process, light availability to the plant may also regulate symbiotic nitrogen fixation rates. Despite the importance of symbiotic nitrogen fixation to biosphere functioning, the environmental factors that most strongly regulate this process remain unresolved. Here we show that light regulates symbiotic nitrogen fixation more strongly than does soil nitrogen and that light mediates the response of symbiotic nitrogen fixation to soil nitrogen availability. In a shadehouse experiment, low light levels (comparable with forest understories) completely shut down symbiotic nitrogen fixation, whereas soil nitrogen levels that far exceeded plant demand did not fully downregulate symbiotic nitrogen fixation at high light. For in situ forest seedlings, light was a notable predictor of symbiotic nitrogen fixation activity, but soil-extractable nitrogen was not. Light as a primary regulator of symbiotic nitrogen fixation is a departure from decades of focus on soil nitrogen availability. This shift in our understanding of symbiotic nitrogen fixation regulation can resolve a long-standing biogeochemical paradox, and it will improve our ability to predict how symbiotic nitrogen fixation will fuel the global forest carbon sink and respond to human alteration of the global nitrogen cycle.
氮几乎限制了地球上所有生物群系的初级生产力。某些被子植物及其共生细菌进行的共生固氮作用是生物圈中新增氮的最大潜在自然来源,它影响着全球初级生产力、碳固存和元素循环。由于共生固氮作用代表了土壤氮吸收的替代途径,因此许多关于共生固氮作用调控的研究都集中在土壤氮供应上。然而,由于共生固氮作用是一个能量消耗巨大的过程,植物的光照条件也可能调控共生固氮作用的速率。尽管共生固氮作用对生物圈功能具有重要意义,但调节这一过程的环境因素仍未得到解决。在这里,我们表明光照对共生固氮作用的调控比土壤氮更为强烈,并且光照介导了共生固氮作用对土壤氮供应的响应。在一个遮荫实验中,低光照水平(与森林林下层相当)完全抑制了共生固氮作用,而远高于植物需求的土壤氮水平在高光下也不能完全下调共生固氮作用。对于原位森林幼苗,光照是共生固氮作用活性的一个显著预测因子,但土壤可提取氮不是。光照作为共生固氮作用的主要调控因子,与几十年来对土壤氮供应的关注形成了鲜明对比。这种对共生固氮作用调控的理解的转变可以解决一个长期存在的生物地球化学悖论,并将提高我们预测共生固氮作用将如何为全球森林碳汇提供燃料以及对人类改变全球氮循环的响应的能力。