Department of Materials Science, Sichuan University, Chengdu, 610064, China.
Phys Chem Chem Phys. 2018 Aug 29;20(34):21814-21821. doi: 10.1039/c8cp03304h.
Here, we develop new colossal permittivity (CP) (Pr0.5Nb0.5)xTi1-xO2 ceramics by controlling the secondary phases, and then both colossal permittivity (εr = 6-8 × 104, 1 kHz) and low dielectric loss (tan δ = 3.7-7.5%, 1 kHz) can be realized in a composition range (x = 0.5-2.5%). The ceramics with x = 1% possess a high dielectric constant (εr = 74 533), and importantly a low dielectric loss (tan δ = 3.7%) can be found, which is lower than most of the typical CP materials and chemically modified TiO2 ceramics. In addition, the εr changing rates of 143 per degree Celsius and 35 per kiloHertz indicate an excellent temperature and frequency stability of the dielectric behaviors. XRD, FE-SEM and element mapping are conducted to probe the secondary phases, and element line scanning is used to explore the elemental composition of the secondary phases. The test results indicate that optimized dopants can enhance the dielectric properties, while secondary phases induced by x > 5% dopants can cause adverse effects on the dielectric properties. XPS results further demonstrate that the defect-dipole theory may be suitable to explain the significant improvement of dielectric properties. We believe that (Pr, Nb)TiO2 ceramics are one of the most competitive candidates in the field of electronic and energy-storage devices.
在这里,我们通过控制第二相来开发新型巨介电常数(CP)(Pr0.5Nb0.5)xTi1-xO2 陶瓷,然后在组成范围内(x=0.5-2.5%)实现巨介电常数(εr=6-8×104,1 kHz)和低介电损耗(tanδ=3.7-7.5%,1 kHz)。x=1%的陶瓷具有高介电常数(εr=74533),重要的是可以发现低介电损耗(tanδ=3.7%),低于大多数典型 CP 材料和化学改性 TiO2 陶瓷。此外,εr 的变化率为每摄氏度 143 和每千赫兹 35,表明介电性能具有优异的温度和频率稳定性。进行了 XRD、FE-SEM 和元素映射来探测第二相,并使用元素线扫描来探索第二相的元素组成。测试结果表明,优化掺杂剂可以增强介电性能,而 x>5%掺杂剂引起的第二相可能对介电性能产生不利影响。XPS 结果进一步表明,缺陷偶极子理论可能适用于解释介电性能的显著提高。我们相信(Pr,Nb)TiO2 陶瓷是电子和储能器件领域最具竞争力的候选材料之一。