Han Huan, Bae Yong Gyun, Hwang Seung Tae, Kim Hyung-Yoon, Park Il, Kim Sung-Mok, Choe Yeonhyeon, Moon Young-June, Choi Jin-Ho
Computational Fluid Dynamics and Acoustics Laboratory, School of Mechanical Engineering, Korea University, Anamdong 5Ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
Department of Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
Int J Cardiovasc Imaging. 2019 Jan;35(1):185-193. doi: 10.1007/s10554-018-1432-z. Epub 2018 Aug 20.
Computed tomography angiography (CCTA)-based calculations of fractional flow reserve (FFR) can improve the diagnostic performance of CCTA for physiologically significant stenosis but the computational resource requirements are high. This study aimed at establishing a simple and efficient algorithm for computing simulated FFR (S-FFR). A total of 107 patients who underwent CCTA and invasive FFR measurements were enrolled in the study. S-FFR was calculated using 145 evaluable coronary arteries with off-the-shelf softwares. FFR ≤ 0.80 was a reference threshold for diagnostic performance of diameter stenosis (DS) ≥ 50%, DS ≥ 70%, or S-FFR ≤ 0.80. FFR ≤ 0.80 was identified in 78 vessels (54%). In per-vessel analysis, S-FFR showed good correlation (r = 0.83) and agreement (mean difference = 0.02 ± 0.08) with FFR. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of S-FFR ≤ 0.80 for FFR ≤ 0.80 were 84%, 92%, 92%, 83%, and 88%, respectively. S-FFR ≤ 0.80 showed much higher predictive performance for FFR ≤ 0.80 compared with DS ≥ 50% or DS ≥ 70% (c-statistics = 0.92 vs. 0.58 or 0.65, p < 0.001, all). The classification agreement between FFR and S-FFR was > 80% when the average of FFR and S-FFR was < 0.76 or > 0.86. Per-patient analysis showed consistent results. In this study, a simple and computationally efficient simulated FFR (S-FFR) algorithm is designed and tested using non-proprietary off-the-shelf software. This algorithm may expand the accessibility of clinical applications for non-invasive coronary physiology study.
基于计算机断层扫描血管造影(CCTA)的血流储备分数(FFR)计算可提高CCTA对具有生理学意义的狭窄的诊断性能,但计算资源需求较高。本研究旨在建立一种简单有效的算法来计算模拟FFR(S-FFR)。共有107例接受CCTA和有创FFR测量的患者纳入本研究。使用现成软件对145条可评估冠状动脉计算S-FFR。FFR≤0.80是直径狭窄(DS)≥50%、DS≥70%或S-FFR≤0.80诊断性能的参考阈值。78条血管(54%)的FFR≤0.80。在每支血管分析中,S-FFR与FFR显示出良好的相关性(r=0.83)和一致性(平均差异=0.02±0.08)。S-FFR≤0.80对FFR≤0.80的敏感性、特异性、阳性预测值、阴性预测值和准确性分别为84%、92%、92%、83%和88%。与DS≥50%或DS≥70%相比,S-FFR≤0.80对FFR≤0.80显示出更高的预测性能(c统计量=0.92对0.58或0.65,p<0.001,所有)。当FFR和S-FFR的平均值<0.76或>0.86时,FFR与S-FFR之间的分类一致性>80%。每位患者分析显示结果一致。在本研究中,使用非专有现成软件设计并测试了一种简单且计算高效的模拟FFR(S-FFR)算法。该算法可能会扩大无创冠状动脉生理学研究临床应用的可及性。